精英家教网 > 高中数学 > 题目详情
13.以集合A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,已知取出的一个数是12,则取出的数构成可约分数的概率是$\frac{4}{7}$.

分析 分析出共可得到多少个分数,再在其中分析有多少个分子与分母能约分的分数,相比即为所求的概率.

解答 解:由于这种分数是可约分数的分子与分母全为偶数,取出的一个数是12,只要在剩下7个中再取一个偶数,有4个符合,
故取出的数构成可约分数的概率是$\frac{4}{7}$,
故答案为:$\frac{4}{7}$.

点评 本题主要考查了等可能事件的概率,用到的知识点为:概率=所求情况数与总情况数之比.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图所示,正三棱柱ABC-A1B1C1中,A1A=3,AB=2,D是BC上的中点,D1是B1C1的中点,
(1)求证:平面A1BD1∥平面AC1D.
(2)求四棱锥A1-B1BCC1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.动点P为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上异于椭圆顶点A(a,0),B(-a,0)的一点,F1,F2为椭圆的两个焦点,动圆M与线段F1P、F1F2的延长线及线段PF2相切,则圆心M的轨迹为除去坐标轴上的点的(  )
A.抛物线B.椭圆C.双曲线的右支D.一条直线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,短轴长为2.
(1)求椭圆E的方程;
(2)过圆C:x2+y2=r2(0<r<b)上的任意一点作圆C的切线l与椭圆E交于A,B两点,都有OA⊥OB(O为坐标原点),求r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.△ABC中,a,b,c分别是内角A,B,C的对边,且cos2B+3cos(A+C)+2=0,b=$\sqrt{3}$,则$\frac{sinC}{c}$等于(  )
A.$\frac{1}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右顶点为Q,O为坐标原点,过OQ的中点作x轴的垂线与椭圆在第一象限交于点A,点A的纵坐标为$\frac{3}{2}$c,c为半焦距.
(1)求椭圆的离心率;
(2)过点A斜率为$\frac{1}{2}$的直线l与椭圆交于另一点B,以AB为直径的圆过点P($\frac{1}{2}$,$\frac{9}{2}$),求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=${∫}_{0}^{x}$(-3x2+3f′(2))dx,则f′(2)=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知8a3+9a+c=0,b3-$\frac{1}{{3}^{b}}$-c=0,其中a,b,c均为非零实数,则$\frac{a}{b}$的值为-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.M是△ABC所在平面上一点,满足$\overrightarrow{MA}$+$\overrightarrow{MB}$+$\overrightarrow{MC}$=2$\overrightarrow{AB}$,则$\frac{{S}_{△ABM}}{{S}_{△ABC}}$为(  )
A.1:2B.1:3C.1:1D.1:4

查看答案和解析>>

同步练习册答案