精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=${∫}_{0}^{x}$(-3x2+3f′(2))dx,则f′(2)=6.

分析 先根据定积分求出f(x),再求导,代值计算即可.

解答 解:f(x)=${∫}_{0}^{x}$(-3x2+3f′(2))dx=(-x3+3f′(2)x)|${\;}_{0}^{x}$=-x3+3f′(2)x
∴f′(x)=-3x2+3f′(2),
∴f′(2)=-12+3f′(2),
∴f′(2)=6,
故答案为:6.

点评 本题考查了定积分的计算和导数的运算法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx-a(x-1)(a∈R)
(Ⅰ)若a=1,求证:当x>0时,f(x)≤0;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)求证:(1+$\frac{1}{2}$)(1+$\frac{1}{4}$)…(1+$\frac{1}{{2}^{n}}$)<e.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设函数f(x)=|x+1|+|x-a|.
(Ⅰ)当a=2时,解不等式:f(x)≥5;
(Ⅱ)若存在x0∈R,使得f(x0)<2,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.以集合A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,已知取出的一个数是12,则取出的数构成可约分数的概率是$\frac{4}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),过点Q($\sqrt{2}$,1),右焦点F($\sqrt{2}$,0),
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=k(x-1)(k>0)分别交x轴,y轴于C,D两点,且与椭圆C交于M,N两点,若$\overrightarrow{CN}=\overrightarrow{MD}$,求k值,并求出弦长|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若复数z=$\frac{i}{1+i}$+$\frac{2}{i}$(i为虚数单位),则|z|=(  )
A.$\frac{\sqrt{10}}{2}$B.2C.$\frac{3}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.执行如图所示的程序框图,若输入x=3,则输出y的值为(  )
A.5B.9C.17D.33

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某校在高二年级实行选课走班教学,学校为学生提供了多种课程,其中数学科提供5种不同层次的课程,分别称为数学1、数学2、数学3、数学4、数学5,每个学生只能从这5种数学课程中选择一种学习,该校高二年级1800名学生中随机抽取50名学生,统计他们的数学选课情况,制成如表所示的频率分布表:
课程数学1数学2数学3数学4数学5合计
频数201012ab50
频率0.40.2p0.12q1
(1)求出表中频率分布表中的值,并根据频率分布表估计该校高二年级选修数学4、数学5的学生各约有多少人?
(2)先要从选修数学4和数学5的这(a+b)名学生中任选两名学生参加一项活动,问选取的两名学生都选修数学4的概率为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知总体的各个个体的值由小到大依次为1,3,4,8,a,c,11,23,53,86,且总体的中位数为10,则 cos $\frac{a+c}{3}$ π 的值为-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案