精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=lnx-a(x-1)(a∈R)
(Ⅰ)若a=1,求证:当x>0时,f(x)≤0;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)求证:(1+$\frac{1}{2}$)(1+$\frac{1}{4}$)…(1+$\frac{1}{{2}^{n}}$)<e.

分析 (Ⅰ)将a=1代入f(x),得到f(x)的导数,求出函数的单调区间,从而证出f(x)≤0;
(Ⅱ)求出f(x)的导数,通过讨论a的符号,求出函数的单调区间即可;
(Ⅲ)根据lnx<x-1,(x>1),令t=x-1,则x=t+1,得到ln(t+1)<t,(t>0),分别取t=$\frac{1}{2}$,$\frac{1}{4}$,…,$\frac{1}{{2}^{n}}$,得到:ln(1+$\frac{1}{2}$)<$\frac{1}{2}$,ln(1+$\frac{1}{4}$)<$\frac{1}{4}$,…,ln(1+$\frac{1}{{2}^{n}}$)<$\frac{1}{{2}^{n}}$,相加即可.

解答 解:(Ⅰ)证明:a=1时,f(x)=lnx-x+1,
∴f′(x)=$\frac{1}{x}$-1=$\frac{1-x}{x}$,
当x≥1时,f′(x)≤0,函数f(x)在[1,+∞)递减,即f(x)≤f(1)=0,
当0<x<1时,f′(x)>0,函数f(x)在(0,1)递增,∴f(x)<f(1)=0,
综上,x>0时且a=1时,f(x)≤0;
(Ⅱ)∵f′(x)=$\frac{1}{x}$-a=$\frac{1-ax}{x}$,
当a≤0时,f′(x)>0,f(x)在(0,+∞)递增,
当a>0时,f(x)在(0,$\frac{1}{a}$)递增,在($\frac{1}{a}$,+∞)递减;
(Ⅲ)要证(1+$\frac{1}{2}$)(1+$\frac{1}{4}$)…(1+$\frac{1}{{2}^{n}}$)<e,
两边取以e为底的对数,
即只需证ln(1+$\frac{1}{2}$)+ln(1+$\frac{1}{4}$)+…+ln(1+$\frac{1}{{2}^{n}}$)<1,
由(Ⅰ)可得,lnx<x-1,(x>1),令t=x-1,则x=t+1,
∴ln(t+1)<t,(t>0),
分别取t=$\frac{1}{2}$,$\frac{1}{4}$,…,$\frac{1}{{2}^{n}}$,得到:
ln(1+$\frac{1}{2}$)<$\frac{1}{2}$,ln(1+$\frac{1}{4}$)<$\frac{1}{4}$,…,ln(1+$\frac{1}{{2}^{n}}$)<$\frac{1}{{2}^{n}}$,
将上述n个不等式相加,得:
ln(1+$\frac{1}{2}$)+ln(1+$\frac{1}{4}$)+…+ln(1+$\frac{1}{{2}^{n}}$)<$\frac{1}{2}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n}}$=1-$\frac{1}{{2}^{n}}$<1.

点评 本题考查了导数的应用,考查函数的单调性、最值问题,考查不等式问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.某校为了对初三学生的体重进行摸底调查,随机抽取了50名学生的体重(kg),将所得数据整理后,画出了频率分布直方图,体重在[45,50)内适合跑步训练,体重在[50,55)内适合跳远训练,体重在[55,60)内适合投掷相关方面训练,试估计该校初三学生适合参加跑步、跳远、投掷三项训练的集训人数之比为(  )
A.4:3:1B.5:3:1C.5:3:2D.3:2:1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设复数z满足(i-1)z=2,则z=(  )
A.-1-iB.-1+iC.1-iD.1+i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,正三棱柱ABC-A1B1C1中,A1A=3,AB=2,D是BC上的中点,D1是B1C1的中点,
(1)求证:平面A1BD1∥平面AC1D.
(2)求四棱锥A1-B1BCC1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知正方体ABCD-A1B1C1D1的棱长为2,O是AC的中点,E是线段D1O上一点,且$\overrightarrow{{D_1}E}=λ\overrightarrow{EO}$.
(1)求证:D1O⊥AC;
(2)若DE⊥平面CD1O,求λ的值,并求三棱锥C-DEO的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知抛物线C:y2=4x.直线l:y=k(x-8)与抛物线C交于A,B(A在B的下方)两点,与x
轴交于点P.
(1)若点P恰为弦AB的三等分点,试求实数k的值.
(2)过点P与直线l垂直的直线m与抛物线C交于点M,N,试求四边形AMBN的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,E为AD上一点,F为PC上一点,四边形BCDE为矩形,∠PAD=60°,PB=2$\sqrt{3}$,PA=ED=2AE=2.
(1)求证:PE⊥平面ABCD;
(2)若二面角F-BE-C为30°,设$\overrightarrow{PF}$=λ$\overrightarrow{FC}$,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.动点P为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上异于椭圆顶点A(a,0),B(-a,0)的一点,F1,F2为椭圆的两个焦点,动圆M与线段F1P、F1F2的延长线及线段PF2相切,则圆心M的轨迹为除去坐标轴上的点的(  )
A.抛物线B.椭圆C.双曲线的右支D.一条直线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=${∫}_{0}^{x}$(-3x2+3f′(2))dx,则f′(2)=6.

查看答案和解析>>

同步练习册答案