精英家教网 > 高中数学 > 题目详情
7.某校为了对初三学生的体重进行摸底调查,随机抽取了50名学生的体重(kg),将所得数据整理后,画出了频率分布直方图,体重在[45,50)内适合跑步训练,体重在[50,55)内适合跳远训练,体重在[55,60)内适合投掷相关方面训练,试估计该校初三学生适合参加跑步、跳远、投掷三项训练的集训人数之比为(  )
A.4:3:1B.5:3:1C.5:3:2D.3:2:1

分析 分别求出体重在[45,50)内的频率为0.1×5=0.5,体重在[50,55)内频率为0.06×5=0.30,体重在[55,60)内频率为0.02×5=0.1,即可求得结论.

解答 解:体重在[45,50)内的频率为0.1×5=0.5,体重在[50,55)内频率为0.06×5=0.30,体重在[55,60)内频率为0.02×5=0.1,
∵0.5:0.3:0.1=5:3:1
故可估计跑步、跳远、投掷三项训练的集训人数之比为5:3:1,
故选:B.

点评 本题主要考查了频率分布直方图,同时考查了学生的读图能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.在钝角△ABC中,内角A,B,C所对的边分别为a,b,c,已知a=7,c=5,sinC=$\frac{{5\sqrt{3}}}{14}$,则△ABC的面积等于(  )
A.$\frac{{25\sqrt{3}}}{2}$B.$\frac{{15\sqrt{3}}}{2}$C.$\frac{{15\sqrt{3}}}{4}$D.$\frac{15}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知sin(α+$\frac{π}{5}$)=$\frac{\sqrt{3}}{3}$,则cos(2α+$\frac{2π}{5}$)=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某学校高中每个年级只有三个班,且同一年级的三个班的羽毛球水平相当,各年级举办班级羽毛球比赛时,都是三班得冠军的概率为(  )
A.$\frac{1}{27}$B.$\frac{1}{9}$C.$\frac{1}{8}$D.$\frac{1}{36}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=lnx+$\frac{a}{x}$,a∈R.
(Ⅰ)当a=e(e为自然对数的底数)时,求f(x)的极小值;
(Ⅱ)讨论函数g(x)=f′(x)-$\frac{x}{3}$零点的个数;
(Ⅲ)若对任意m>n>0,$\frac{f(m)-f(n)}{m-n}$<1恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知数列{an}的前n项和为Sn,an=b•an-1,下列叙述正确的是(  )
A.当b=0时,数列{an}是等差数列B.当b≠0时,数列{an}是等比数列
C.当b=0时,Sn=a1D.当b≠0时,Sn=$\frac{{{a_1}({1-{b^n}})}}{1-b}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{3}$,<$\overrightarrow{a}$,$\overrightarrow{b}$>=150°,则|2$\overrightarrow{a}$-$\overrightarrow{b}$|=(  )
A.1B.13C.$\sqrt{13}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.“ab<0”是“|a-b|=|a|+|b|”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx-a(x-1)(a∈R)
(Ⅰ)若a=1,求证:当x>0时,f(x)≤0;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)求证:(1+$\frac{1}{2}$)(1+$\frac{1}{4}$)…(1+$\frac{1}{{2}^{n}}$)<e.

查看答案和解析>>

同步练习册答案