分析 (1)连结DD1,则四边形ADD1A1,BDC1D1均为平行四边形,得出AD∥A1D1,BD1∥DC1.故而平面A1BD1∥平面AC1D.
(2)证明AD⊥平面BCC1B1,于是V${\;}_{{A}_{1}-{B}_{1}BC{C}_{1}}$=V${\;}_{A-{B}_{1}BC{C}_{1}}$=$\frac{1}{3}{S}_{矩形{B}_{1}{C}_{1}CB}•AD$.
解答
证明:(1)连结DD1,
∵四边形BCC1B1是矩形,
∴DD1$\stackrel{∥}{=}$BB1,又∵AA1$\stackrel{∥}{=}$BB1,
∴AA1$\stackrel{∥}{=}$DD1,
∴四边形ADD1A1是平行四边形,
∴AD∥A1D1,
∵AD?平面ADC1,A1D1?平面ADC1,
∴A1D1∥平面ADC1,
同理可得:BD1∥平面ADC1.
∵A1D1?平面A1BD1,BD1?平面A1BD1,A1D1∩BD1=D1,
∴平面A1BD1∥平面AC1D.
解:(2)∵BB1⊥平面ABC,AD?平面ABC,
∴BB1⊥AD,
∵△ABC是等边三角形,D是BC的中点,AB=2,
∴AD⊥BC,AD=$\sqrt{3}$.
又BC?平面BCC1B1,BB1?平面BCC1B1,BC∩BB1=B,
∴AD⊥平面BCC1B1,
∴V${\;}_{{A}_{1}-{B}_{1}BC{C}_{1}}$=V${\;}_{A-{B}_{1}BC{C}_{1}}$=$\frac{1}{3}{S}_{矩形{B}_{1}{C}_{1}CB}•AD$=$\frac{1}{3}×2×3×\sqrt{3}$=2$\sqrt{3}$.
点评 本题考查了直棱柱的结构特征,面面平行的判定,棱锥的体积计算,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{27}$ | B. | $\frac{1}{9}$ | C. | $\frac{1}{8}$ | D. | $\frac{1}{36}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{3}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com