精英家教网 > 高中数学 > 题目详情
8.设复数z满足(i-1)z=2,则z=(  )
A.-1-iB.-1+iC.1-iD.1+i

分析 把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.

解答 解:由(i-1)z=2,得$z=\frac{2}{i-1}=\frac{2(-1-i)}{(i-1)(-1-i)}=-1-i$.
故选:A.

点评 本题考查复数代数形式的乘除运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知sin(α+$\frac{π}{5}$)=$\frac{\sqrt{3}}{3}$,则cos(2α+$\frac{2π}{5}$)=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{3}$,<$\overrightarrow{a}$,$\overrightarrow{b}$>=150°,则|2$\overrightarrow{a}$-$\overrightarrow{b}$|=(  )
A.1B.13C.$\sqrt{13}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.“ab<0”是“|a-b|=|a|+|b|”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列的前项和为Sn,且{${\frac{S_n}{n}}$}是等差数列,已知a1=3,$\frac{S_2}{2}$+$\frac{S_3}{3$+$\frac{S_4}{4}$=15.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令 cn=$\left\{{\begin{array}{l}{\frac{2}{S_n}(n为奇数)}\\{{2^{{a_{\frac{n}{2}}}}}(n为偶数)}\end{array}}$,设数列{cn}的前n项和为Tn,求T2n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.边长为2$\sqrt{3}$的正三角形ABC,其内切圆与BC切于点E,F为内切圆上任意一点,则$\overrightarrow{AE}$•$\overrightarrow{AF}$的取值范围为[3,9].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow{a}$=(sin($\frac{ω}{2}$x+φ),1),$\overrightarrow{b}$=(1,cos($\frac{ω}{2}$x+φ))(ω>0,0<φ<$\frac{π}{4}$),记函数f(x)=($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$).若函数y=f(x)的周期为4,且经过点M(1,$\frac{1}{2}$).
(1)求ω的值;
(2)当-1≤x≤1时,求函数f(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx-a(x-1)(a∈R)
(Ⅰ)若a=1,求证:当x>0时,f(x)≤0;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)求证:(1+$\frac{1}{2}$)(1+$\frac{1}{4}$)…(1+$\frac{1}{{2}^{n}}$)<e.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设函数f(x)=|x+1|+|x-a|.
(Ⅰ)当a=2时,解不等式:f(x)≥5;
(Ⅱ)若存在x0∈R,使得f(x0)<2,试求实数a的取值范围.

查看答案和解析>>

同步练习册答案