精英家教网 > 高中数学 > 题目详情
3.M是△ABC所在平面上一点,满足$\overrightarrow{MA}$+$\overrightarrow{MB}$+$\overrightarrow{MC}$=2$\overrightarrow{AB}$,则$\frac{{S}_{△ABM}}{{S}_{△ABC}}$为(  )
A.1:2B.1:3C.1:1D.1:4

分析 如图所示,由$\overrightarrow{MA}$+$\overrightarrow{MB}$+$\overrightarrow{MC}$=2$\overrightarrow{AB}$,可得$\overrightarrow{MA}$+$\overrightarrow{MB}$+$\overrightarrow{MC}$=2$(\overrightarrow{AM}+\overrightarrow{MB})$,化为:$3\overrightarrow{AM}$=$\overrightarrow{BC}$,因此AM∥BC,3AM=BC,∠CBA=π-∠BAM,再利用三角形面积计算公式即可得出.

解答 解:如图所示,∵$\overrightarrow{MA}$+$\overrightarrow{MB}$+$\overrightarrow{MC}$=2$\overrightarrow{AB}$
∴$\overrightarrow{MA}$+$\overrightarrow{MB}$+$\overrightarrow{MC}$=2$(\overrightarrow{AM}+\overrightarrow{MB})$,
化为:$3\overrightarrow{AM}$=$\overrightarrow{BC}$,
∴AM∥BC,3AM=BC,∠CBA=π-∠BAM,
∴sin∠CBA=sin∠BAM,
则$\frac{{S}_{△ABM}}{{S}_{△ABC}}$=$\frac{\frac{1}{2}AB•AMsin∠BAM}{\frac{1}{2}BA•BCsin∠ABC}$=$\frac{1}{3}$.
故选:B.

点评 本题考查了向量的三角形法则、向量共线定理、三角形面积计算公式,考查了数形结合方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.以集合A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,已知取出的一个数是12,则取出的数构成可约分数的概率是$\frac{4}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某校在高二年级实行选课走班教学,学校为学生提供了多种课程,其中数学科提供5种不同层次的课程,分别称为数学1、数学2、数学3、数学4、数学5,每个学生只能从这5种数学课程中选择一种学习,该校高二年级1800名学生中随机抽取50名学生,统计他们的数学选课情况,制成如表所示的频率分布表:
课程数学1数学2数学3数学4数学5合计
频数201012ab50
频率0.40.2p0.12q1
(1)求出表中频率分布表中的值,并根据频率分布表估计该校高二年级选修数学4、数学5的学生各约有多少人?
(2)先要从选修数学4和数学5的这(a+b)名学生中任选两名学生参加一项活动,问选取的两名学生都选修数学4的概率为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)长轴为4,离心率为$\frac{1}{2}$,点P为椭圆上异于顶点的任意一点,过点P作椭圆的切线l交y轴于点A,直线l′过点P且垂直于l交y轴于B,试判断以AB为直径的圆能否经过定点,若能求出定点坐标,若不能说出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若(1-2x)2016=a0+a1x+a2x2+…+a2016x2016,(x∈R),则(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2016)的值是(  )
A.2018B.2017C.2016D.2015

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设集合M={x|x2+x≤0},N={x|2x>$\frac{1}{4}$},则M∪N等于(  )
A.[-1,0]B.(-1,0)C.(-2,+∞)D.(-2,0]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知总体的各个个体的值由小到大依次为1,3,4,8,a,c,11,23,53,86,且总体的中位数为10,则 cos $\frac{a+c}{3}$ π 的值为-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知命题p:?m∈R,sinm=$\frac{1}{3}$,命题q:?x∈R,x2+mx+1>0恒成立,若p∧q为假命题,则数m的取值范围是(  )
A.m≥2B.m≤-2C.m≤-2或m≥2D.-2≤m≤2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.有红、黄、蓝三种颜色,大小相同的小球各三个,在每种颜色的3个小球上分别标上号码1、2、3,现任取出3个,它们的颜色与号码均不相同的概率是(  )
A.$\frac{1}{14}$B.$\frac{9}{28}$C.$\frac{3}{28}$D.$\frac{3}{56}$

查看答案和解析>>

同步练习册答案