精英家教网 > 高中数学 > 题目详情
18.椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右顶点为Q,O为坐标原点,过OQ的中点作x轴的垂线与椭圆在第一象限交于点A,点A的纵坐标为$\frac{3}{2}$c,c为半焦距.
(1)求椭圆的离心率;
(2)过点A斜率为$\frac{1}{2}$的直线l与椭圆交于另一点B,以AB为直径的圆过点P($\frac{1}{2}$,$\frac{9}{2}$),求椭圆方程.

分析 (1)由已知得到A的坐标,代入椭圆方程得到b,c的关系式,结合隐含条件即可求得椭圆的离心率;
(2)由离心率得到a,c的关系,写出直线l的方程,与椭圆方程联立,求得B点坐标,由$\overrightarrow{PA}•\overrightarrow{PB}=0$求得c值,则椭圆方程可求.

解答 解:(1)由已知可知椭圆过点$A(\frac{a}{2},\frac{3c}{2})$,
代入方程有$\frac{{\frac{a^2}{4}}}{a^2}+\frac{{\frac{{9{c^2}}}{4}}}{b^2}=1$,得b2=3c2
又a2=b2+c2,∴a2=4c2
∴$e=\frac{1}{2}$;
(2)由$e=\frac{c}{a}=\frac{1}{2}$,得$\frac{a}{2}=c$,
∴点$A(c,\frac{3}{2}c)$,直线$l:y=\frac{1}{2}x+c$,
联立$\left\{\begin{array}{l}y=\frac{1}{2}x+c\\ \frac{x^2}{{4{c^2}}}+\frac{y^2}{{3{c^2}}}=1\end{array}\right.$,解得B(-2c,0).
又P($\frac{1}{2}$,$\frac{9}{2}$),由已知$\overrightarrow{PA}•\overrightarrow{PB}=0$,
即$(c-\frac{1}{2},\frac{3}{2}c-\frac{9}{2})•(-2c-\frac{1}{2},-\frac{9}{2})=0$.
得$(\frac{1}{2}-c)(\frac{1}{2}+2c)-\frac{9}{2}(\frac{3c}{2}-\frac{9}{2})=0$.
解得c=2.
∴a=4,b2=a2-c2=12.
∴椭圆方程为$\frac{x^2}{16}+\frac{y^2}{12}=1$.

点评 本题考查椭圆的简单性质,考查了直线与椭圆位置关系的应用,训练了向量垂直与数量积关系的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.正三棱柱ABC-A1B1C1(侧棱垂直底面,底面为正三角形的棱柱)的底面边长为2,侧棱长为$\sqrt{3}$,则正三棱柱ABC-A1B1C1的体积为(  )
A.1B.$\frac{{\sqrt{3}}}{2}$C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|x-a|+m|x+a|.
(Ⅰ)当m=a=-1时,求不等式f(x)≥x的解集;
(Ⅱ)不等式f(x)≥2(0<m<1)恒成立时,实数a的取值范围是{a|a≤-3或a≥3},求实数m的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.为了解某班学生喜欢打篮球是否与性别有关,对本班50人进行了问卷调查,得到如表的列联表:
 喜欢打篮球 不喜欢打篮球 合计
 男生  5 
 女生 10  
 合计  50
已知在全部50人中随机抽取1人抽到喜欢打篮球的学生的概率为$\frac{3}{5}$.
(1)请将上面的列联表补充完整(不用写计算过程);
(2)能否在犯错误的概率不超过0.005的前提下认为喜欢打篮球与性别有关?请说明你的理由.
参考公式及数据:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
 P(K2≥k1 0.10 0.05 0.025 0.010 0.005 0.001
 k1 2.706 3.841 5.024 6.6335 7.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.以集合A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,已知取出的一个数是12,则取出的数构成可约分数的概率是$\frac{4}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.执行如图所示的程序框图,若输出的T=20,则循环体的判断框内应填入的条件是(填相应编号)②.
(①T≥S;②T>S;③T≤S;④T<S)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若复数z=$\frac{i}{1+i}$+$\frac{2}{i}$(i为虚数单位),则|z|=(  )
A.$\frac{\sqrt{10}}{2}$B.2C.$\frac{3}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.椭圆$\frac{y^2}{5}$+x2=1的长轴长是$2\sqrt{5}$,焦点坐标是(0,±2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设集合M={x|x2+x≤0},N={x|2x>$\frac{1}{4}$},则M∪N等于(  )
A.[-1,0]B.(-1,0)C.(-2,+∞)D.(-2,0]

查看答案和解析>>

同步练习册答案