精英家教网 > 高中数学 > 题目详情
13.已知数列1,a1,a2,4成等差数列,数列1,b1,b2,b3,4成等比数列,则a2b2的值是6.

分析 根据等差数列与等比数列的通项公式求得a2及b2,即可得出a2b2的值.

解答 解:由题意可知:数列1,a1,a2,4成等差数列,设公差为d,
则4=1+3d,解得d=1,
∴a2=1+2d=3.
∵数列1,b1,b2,b3,4成等比数列,设公比为q,
则4=q4,解得q2=2,
∴b2=q2=2.
则a2b2=3×2=6.
故答案为:6.

点评 本题考查了等比数列与等比数列的通项公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知命题p:关于x的不等式x2+2ax+4>0对?x∈R恒成立;命题q:不等式x2-(a+1)x+1≤0的解集是空集.若“p∨q”为真命题,“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若x∈(0,$\frac{π}{3}$],则函数y=sinx+cosx的值域是(1,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.统计局就某地居民的月收入情况调查了10 000人,并根据所得数据画了样本频率分布直方图,每个分组包含左端点,不包含右端点.
(1)为了分析居民的收入与年龄、职业等方面的关系,需再从这10 000人中用分层抽样法抽出100人作进一步分析,则月收入在2 000 至2 500元的应抽取多少人?
(2)根据频率分布直方图估计样本数据的中位数;
(3)根据频率分布直方图估计样本数据的平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线C:$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的左、右焦点分别为F1,F2,P为C的右支上一点,且|PF2|=$\frac{8}{15}$|F1F2|,则△PF1F2的面积等于(  )
A.$\frac{80}{3}$B.$\frac{1}{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.点(-1,-2)关于直线x+y=1对称的点坐标是(  )
A.(3,2)B.(-3,-2)C.(-1,-2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.顶点在x轴上,两顶点间的距离为8,离心率e=$\frac{5}{4}$的双曲线为(  )
A.$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{25}$=1C.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1D.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=|2x-1|,a<b<c,且f(a)>f(c)>f(b),则下列结论中,一定成立的是(  )
A.2a+2c<2B.2-a<2cC.a<0,b≥0,c>0D.a<0,b<0,c<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.椭圆$\frac{x^2}{16}$+$\frac{y^2}{12}$=1的左顶点到右焦点的距离为(  )
A.2B.3C.4D.6

查看答案和解析>>

同步练习册答案