【题目】定义在R上的奇函数f(x),当x>0时,f(x)=2;则奇函数f(x)的值域是 .
【答案】{﹣2,0,2}
【解析】解:∵定义在R上的奇函数f(x), ∴f(﹣x)=﹣f(x),f(0)=0
设x<0,则﹣x>0时,f(﹣x)=﹣f(x)=﹣2
∴f(x)=
∴奇函数f(x)的值域是:{﹣2,0,2}
所以答案是:{﹣2,0,2}
【考点精析】认真审题,首先需要了解函数的值域(求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的),还要掌握函数奇偶性的性质(在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇)的相关知识才是答题的关键.
科目:高中数学 来源: 题型:
【题目】太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相互统一的和谐美.定义:能够将圆的周长和面积同时等分成两部分的函数称为圆的一个“太极函数”.下列有关说法中:
①对圆的所有非常数函数的太极函数中,一定不能为偶函数;
②函数是圆的一个太极函数;
③存在圆,使得是圆的太极函数;
④直线所对应的函数一定是圆的太极函数.
所有正确说法的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设全集U={(x,y)|x,y∈R},集合M={(x,y)| =1},N={(x,y)|y=x+1},则N∩(UM)等于( )
A.
B.{(2,3)}
C.(2,3)
D.{(x,y)|y=x+1}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种商品在近30天内每件的销售价格P(元)与时间t(天)的函数关系式近似满足P= ,商品的日销售量Q(件)与时间t(天)的函数关系式近似满足Q=﹣t+40(1≤t≤30,t∈N).
(1)求这种商品日销售金额y与时间t的函数关系式;
(2)求y的最大值,并指出日销售金额最大的一天是30天中第几天.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产产量(单位:万盒)的数据如下表所示:
(月份) | 1 | 2 | 3 | 4 | 5 |
(万盒) | 1 | 4 | 5 | 6 | 6 |
(1)该同学为了求出关于的线性回归方程,根据表中数据已经正确计算出,试求出的值,并估计该厂6月份生产的甲胶囊产量数;
(2)若某药店现有该制药厂今年二月份生产的甲胶囊4盒和三月份生产的甲胶囊5盒,小红同学从中随机购买了3盒甲胶囊.后经了解发现该制药厂今年二月份生产的所有甲胶囊均存在质量问题.记小红同学所购买的3盒甲胶囊中存在质量问题的盒数为,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂商为了解用户对其产品是否满意,在使用产品的用户中随机调查了80人,结果如下表:
(1)根据上述,现用分层抽样的方法抽取对产品满意的用户5人,在这5人中任选2人,求被选中的恰好是男、女用户各1人的概率;
(2)有多大把握认为用户对该产品是否满意与用户性别有关?请说明理由.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
注:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙三名学生参加某电视台举办的国学知识竞赛,在本次竞赛中只有过关和不过关两种结果,假设甲、乙、丙竞赛过关的概率分别为,且他们竞赛过关与否互不影响.
(1)求在这次国学知识竞赛中,甲、乙、丙三名学生至少有一名学生过关的概率;
(2)记在这次国学知识竞赛中,甲、乙、丙三名学生过关的人数为,求随机变量的分布列和数学期望
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某大学自主招生考试中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E五个等级.某考场考生的两科考试成绩的数据统计如下图所示,其中“数学与逻辑”科目的成绩等级为B的考生有10人.
(1)求该考场考生中“阅读与表达”科目中成绩等级为A的人数;
(2)已知参加本考场测试的考生中,恰有2人的两科成绩等级均为A.在至少一科成绩等级为A的考生中,随机抽取2人进行访谈,求这2人的两科成绩等级均为A的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com