【题目】为了测量山顶M的海拔高度,飞机沿水平方向在A,B两点进行测量,A,B,M在同一个铅垂面内(如图).能够测量的数据有俯角、飞机的高度和A,B两点间的距离.请你设计一个方案,包括:
(1)指出需要测量的数据(用字母表示,并在图中标出);
(2)用文字和公式写出计算山顶M海拔高度的步骤.
科目:高中数学 来源: 题型:
【题目】函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为( )
A.(kπ﹣ ,kπ+ ,),k∈z
B.(2kπ﹣ ,2kπ+ ),k∈z
C.(k﹣ ,k+ ),k∈z
D.( ,2k+ ),k∈z
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,将正六边形ABCDEF中的一半图形ABCD绕AD翻折到AB1C1D,使得∠B1AF=60°.G是BF与AD的交点.
(Ⅰ)求证:平面ADEF⊥平面B1FG;
(Ⅱ)求直线AB1与平面ADEF所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】空间四边形ABCD的对角线AC=10,BD=6,M、N分别为AB、CD的中点,MN=7,则异面直线AC和BD所成的角等于( )
A.30°
B.60°
C.90°
D.120°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系 中,椭圆 的中心为坐标原点,左焦点为F1(﹣1,0),离心率.
(1)求椭圆G 的标准方程;
(2)已知直线 与椭圆 交于 两点,直线 与椭圆 交于 两点,且 ,如图所示.
①证明: ;
②求四边形 的面积 的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中, 已知定圆,动圆过点且与圆相切,记动圆圆心的轨迹为曲线.
(1)求曲线的方程;
(2)设是曲线上两点,点关于轴的对称点为 (异于点),若直线分别交轴于点,证明: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+x.
(Ⅰ)求函数g(x)的解析式;
(Ⅱ)若h(x)=g(x)﹣λf(x)+1在[﹣1,1]上是增函数,求实数λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的一个焦点为,其左顶点在圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)直线交椭圆于两点,设点关于轴的对称点为(点与点不重合),且直线与轴的交于点,试问的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com