精英家教网 > 高中数学 > 题目详情

已知函数数学公式(m,n为常数),且关于x的方程f(x)=x-12有两个实数根x1=3,x2=4.
(1)求m,n的值;
(2)设t>1,试解关于x的不等式:(2-x)f(x)<(t+1)x-t.

解:(1)由题意得:
化简得:(m-1)x2+(n-12m)x-12n=0,
又关于x的方程f(x)=x-12有两个实数根x1=3,x2=4,

∴m=-1,n=2.
(2)此时,
∴关于x的不等式:(2-x)f(x)<(t+1)x-t.
即(2-x)<(t+1)x-t,
化简得:x2-(t+1)x+t<0(x≠2),
即(x-t)(x-1)<0(x≠2),
①当1<t≤2时,不等式的解集为:{x|1<x<t};
②当t>2时,不等式的解集为:{x|1<x<t且x≠2}.
分析:(1)欲求m,n的值,由题意得得:(m-1)x2+(n-12m)x-12n=0,根据一元二次方程根与系数的关系,可以求得两根之积和两根之和,即可得到一个关于m,n的方程,解方程即可求m,n的值.
(2)由(1)得,从而关于x的不等式:(2-x)f(x)<(t+1)x-t.化简得即(x-t)(x-1)<0(x≠2),再对t进行分类讨论,即可得出不等式的解集.
点评:本题考查了一元二次方程根与系数的关系、不等式的解法,将根与系数的关系与代数式变形相结合解题是经常使用的一种解题方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2+mx+nlnx(x>0,实数m,n为常数).
(1)若n+3m2=0(m>0),且函数f(x)在x∈[1,+∞)上的最小值为0,求m的值;
(2)若对于任意的实数a∈[1,2],b-a=1,函数f(x)在区间(a,b)上总是减函数,对每个给定的n,求m的最大值h(n).

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知函数数学公式(m,n为常数),当x=2时,函数f(x)有极值,若函数f(x)只有三个零点,则实数n的取值范围是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

科目:高中数学 来源:重庆市期末题 题型:解答题

已知函数(m、n为常数).
(1)若f(x)在x=1和x=3处取得极值,试求m,n的值;
(2)若f(x)在(﹣∞,x1)、(x2,+∞)上单调递增,且在(x1,x2)上单调递减,又满足x2﹣x1>1.求证:m2>2(m+2n).

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省宁波市慈溪市高三(上)期中数学试卷(理科)(解析版) 题型:解答题

已知函数(m,n为常数),且关于x的方程f(x)=x-12有两个实数根x1=3,x2=4.
(1)求m,n的值;
(2)设t>1,试解关于x的不等式:(2-x)f(x)<(t+1)x-t.

查看答案和解析>>

同步练习册答案