精英家教网 > 高中数学 > 题目详情
3.设集合A={y|y=x2-2x+1,x∈R},B={y|y=-x2+2x+10,x∈R},求A∪B.

分析 利用配方法能推导出集合A是数轴上不小于0的点的集合,集合B是数轴上不大于11的点的集合,由此能求出A∪B.

解答 解:∵集合A={y|y=x2-2x+1,x∈R}={y|y=(x-1)2≥0},
B={y|y=-x2+2x+10,x∈R}={y|y=11-(x-1)2≤11},
∴A∪B=R.

点评 本题考查集合的并集的求法,是基础题,解题时要认真审题,注意并集运算法则和配方法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.因式分解:(x+y)3+2xy(1-x-y)-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.指出下列各题中集合之间的关系:
(1)集合{x|x2-6x+8=0}与集合{2,3,4,5};
(2)集合{x|2≤x≤6}与集合{2,3,4,5,6}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.证明:“双勾函数”f(x)=ax+$\frac{b}{x}$(a>0,b>0):在 (-∞,-$\sqrt{\frac{b}{a}}$],[$\sqrt{\frac{b}{a}}$,+∞)上单调递增,在[-$\sqrt{\frac{b}{a}}$,0),(0,$\sqrt{\frac{b}{a}}$]上单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)为二次函数.且f(0)=0,f(x+1)=f(x)+2x+1,求二次函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知M={x,xy,$\sqrt{x-y}$},N={0,|x|,y},若M⊆N,且N⊆M,则($\frac{1}{x}$+$\frac{1}{y}$)+($\frac{1}{{x}^{2}}$+$\frac{1}{{y}^{2}}$)+…+($\frac{1}{{x}^{2010}}$+$\frac{1}{{y}^{2010}}$)+($\frac{1}{{x}^{2011}}$+$\frac{1}{{y}^{2011}}$)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若2f(x)-f(-x)=x+1,求f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.若函数y=f(x)的定义域为R,对于定义域内的任意x,存在实数a使得f(x+a)=f(-x)成立,则称此函数具有“P(a)性质”.
(1)判断函数y=sinx是否具有“P(a)性质”,若具有“P(a)性质”,求出所有a的值;若不具有“P(a)性质”,说明理由;
(2)已知y=f(x)具有“P(0)性质”,且当x≤0时f(x)=(x+m)2,求y=f(x)在[0,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)=2012sin(8x+8)对任意x∈R都有f(x1)≤f(x)≤f(x2),则|x1-x2|的最小值为$\frac{π}{8}$.

查看答案和解析>>

同步练习册答案