分析 求导数,利用曲线y=f(x)在x=1处的切线为y=kx,求出a,再确定函数的单调性,即可求函数f(x)的极值.
解答 解:∵f(x)=$\frac{{x}^{2}+2ax}{{e}^{x-1}}$,
∴f′(x)=$\frac{-{x}^{2}+(2-2a)x+2a}{{e}^{x-1}}$,
∵曲线y=f(x)在x=1处的切线为y=kx,
∴f′(1)=1=k,f(1)=1+2a=k,
∴k=1,a=0,
∴f′(x)=$\frac{-x(x-2)}{{e}^{x-1}}$,
令f′(x)>0,可得0<x<2;f′(x)<0,可得x<0或x>2,
∴函数的单调递增区间是(0,2),单调递减区间是(-∞,0),(2,+∞),
∴x=0时,函数取得极小值f(0)=0,x=2时,函数取得极大值$\frac{4}{e}$.
点评 本题考查导数知识的综合运用,考查求函数f(x)的极值,导数的几何意义,正确求出a是关键.
科目:高中数学 来源: 题型:选择题
| A. | 越接近于圆 | B. | 越扁 | ||
| C. | 先接近于圆后越扁 | D. | 先越扁后接近于圆 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | π | C. | $\frac{2π}{3}-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,$\frac{π}{4}$) | B. | (2,$\frac{3π}{4}$) | C. | (2,-$\frac{π}{4}$) | D. | (2,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4π | B. | 5π | C. | 6π | D. | 7π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ∅ | B. | {4} | C. | {2,4} | D. | {2,4,6} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com