精英家教网 > 高中数学 > 题目详情
已知tanx=2,则
sin2x+3sinxcosx
cos2x-sinxcosx
=
 
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:原式分子分母除以cos2x,利用同角三角函数间基本关系变形,将tanx的值代入计算即可求出值.
解答: 解:∵tanx=2,
∴原式=
tan2x+3tanx
1-tanx
=
4+6
1-2
=-10.
故答案为:-10
点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知公差不为零的等差数列{an}的前10项和S10=55,且a2,a4,a8成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn=an+2n,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin2x+2cos2x.
(1)将f(x)的图象向右平移
π
12
个单位长度,再将周期扩大一倍,得到函数g(x)的图象,求g(x)的解析式;
(2)求函数f(x)的最小正周期和单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为正实数,函数f(x)=2x2+(x-a)|x-a|.
(Ⅰ)若f(0)≤-1,求a的取值范围;
(Ⅱ)求f(x)的最小值;
(Ⅲ)若x∈(a,+∞),求不等式f(x)≥1的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

在实数集R上定义运算:x?y=x(a-y)(a∈R,a为常数),若f(x)=ex,g(x)=e-x+2x2,F(x)=f(x)?g(x),
(Ⅰ)求F(x)的解析式;
(Ⅱ)若F(x)在R上是减函数,求实数a的取值范围;
(Ⅲ)若a=-3,在F(x)的曲线上是否存在两点,使得过这两点的切线互相垂直?若存在,求出切线方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的面积为
1
2
,且b=2,c=1,则A=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.

请根据以上茎叶图,对甲乙两班同学身高作比较,写出两个正确的统计结论是:
①:
 
;②:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

光线自点(2,3)射到x轴上点(1,0),经x轴反射,则反射光线的直线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题中正确的是(  )
A、公比q>1的等比数列的各项都大于1
B、公比q<0的等比数列是递减数列
C、常数列是公比为1的等比数列
D、{lg2n}是等差数列而不是等比数列

查看答案和解析>>

同步练习册答案