精英家教网 > 高中数学 > 题目详情
在实数集R上定义运算:x?y=x(a-y)(a∈R,a为常数),若f(x)=ex,g(x)=e-x+2x2,F(x)=f(x)?g(x),
(Ⅰ)求F(x)的解析式;
(Ⅱ)若F(x)在R上是减函数,求实数a的取值范围;
(Ⅲ)若a=-3,在F(x)的曲线上是否存在两点,使得过这两点的切线互相垂直?若存在,求出切线方程;若不存在,说明理由.
考点:利用导数研究曲线上某点切线方程,利用导数研究函数的单调性
专题:导数的综合应用
分析:(Ⅰ)直接由定义运算,把f(x),g(x)的解析式代入F(x)=f(x)?g(x)整理得答案;
(Ⅱ)对(Ⅰ)中求得的F(x)求导,由导函数在R上小于等于0恒成立转化为二次不等式恒成立问题,由判别式的符号得不等式求解a的取值范围;
(Ⅲ)把a=-3代入函数解析式,求出函数导函数,由求得的导函数恒小于0说明F(x)的曲线上不存的两点,使得过这两点的切线点互相垂直.
解答: 解:(I)由定义运算:x?y=x(a-y),得
F(x)=f(x)?g(x)
=f(x)?(a-g(x))
=ex(a-e-x-2x2
=aex-1-2x2ex
(II)∵F′(x)=aex-2x2ex-4xex=-ex(2x2+4x-a),
又当x∈R时,F(x)在减函数,∴F′(x)≤0对于x∈R恒成立,
即-ex(2x2+4x-a)≤0恒成立,
∵-ex<0,∴2x2+4x-a≥0恒成立,
∴△=16-8(-a)≤0,
∴a≤-2;
(III)当a=-3时,F(x)=-3ex-1-2x2ex
设P(x1,y1),Q(x2,y2)是F(x)曲线上的任意两点,
∵F′(x)=-ex(2x2+4x+3)
=-ex[2(x+1)2+1]<0,
∴F′(x1)•F′(x2)>0,
∴F′(x1)•F′(x2)=-1 不成立.
∴F(x)的曲线上不存的两点,使得过这两点的切线点互相垂直.
点评:本题是新定义题,考查了利用导数研究曲线上某点处的切线方程,考查了数学转化思想方法,训练了利用“三个二次”结合解决恒成立问题,属中高档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知AB>0,且直线Ax+By+C=0的倾斜角α满足条sin
α
2
=
1+sinα
-
1-sinα
,则该直线的斜率是(  )
A、
4
3
B、-
4
3
C、
4
3
,或-
4
3
D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3-x
(1)当a=1时,求f(x)的极值并写出极值点.
(2)若f(x)在(-∞,+∞)上是减函数,求a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的解析式.
(1)已知f(x+1)=x2-3x+2,求f(x)
(2)已知f(
x
+1)=x+2
x
,求f(x)
(3)已知2f(
1
x
)+f(x)=x(x≠0)
,求f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形,O为底面中心,PA⊥平面ABCD,PA=AD=2AB.M是PD的中点
(1)求证:直线MO∥平面PAB;
(2)求证:平面PCD⊥平面ABM.
(3)求直线PB与平面ABM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanx=2,则
sin2x+3sinxcosx
cos2x-sinxcosx
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(1,-2)在α终边上,则
6sinα+cosα
3sinα-2cosα
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

复数
2+i
2-i
的实部是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2sin(2x+
π
6
)的图象向左平移φ(φ>0)个单位后所得的图象关于y轴对称,则φ的最小值为(  )
A、
6
B、
3
C、
π
3
D、
π
6

查看答案和解析>>

同步练习册答案