精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=2cos$\frac{ωx}{2}$sin($\frac{ωx}{2}$+$\frac{π}{6}$)-$\frac{1}{2}$(ω>0)的图象相邻两条对称轴的距离为$\frac{π}{2}$
(1)求函数f(x)的解析式及其单调增区间;
(2)在△ABC中,角A、B、C的对边分别为a、b、c,若f($\frac{A}{2}$)-cosA=$\frac{1}{2}$,且bc=1,b+c=3,求a的值.

分析 (1)先根据二倍角公式两角和差的正弦公式化简,再很据正弦函数的图象和性质求出单调区间,
(2)先求出A的大小,再根据余弦定理即可求出

解答 解:(1)f(x)=2cos$\frac{ωx}{2}$sin($\frac{ωx}{2}$+$\frac{π}{6}$)-$\frac{1}{2}$=$\sqrt{3}$sin$\frac{ωx}{2}$cos$\frac{ωx}{2}$+cos2$\frac{ωx}{2}$-$\frac{1}{2}$
=$\frac{\sqrt{3}}{2}$sinωx+$\frac{1}{2}$(1+cosωx)-$\frac{1}{2}$=sin(ωx+$\frac{π}{6}$)
由相邻两条对称轴间的距离为$\frac{π}{2}$,知f(x)的最小正周期T=π,则ω=2
所以$f(x)=sin(2x+\frac{π}{6})$
令$2kπ-\frac{π}{2}≤2x+\frac{π}{6}≤2kπ+\frac{π}{2},k∈Z$
得f(x)的递增区间为$[kπ-\frac{π}{3},kπ+\frac{π}{6}](k∈Z)$
(2)由$f(\frac{A}{2})-cosA=\frac{1}{2}$得$sin(A+\frac{π}{6})-cosA=\frac{1}{2}$
得$\frac{{\sqrt{3}}}{2}sinA-\frac{1}{2}cosA=\frac{1}{2}$,$sin(A-\frac{π}{6})=\frac{1}{2}$,
∵0<A<π,
∴$-\frac{π}{6}<A-\frac{π}{6}<\frac{5π}{6}$,
∴$A-\frac{π}{6}=\frac{π}{6}$,即$A=\frac{π}{3}$
又bc=1,b+c=3,
根据余弦定理可得a2=b2+c2-2bccosA=(b+c)2-3bc=6,
∴$a=\sqrt{6}$

点评 本题考查了二倍角公式两角和差的正弦公式,正弦函数的图象和性质以及余弦定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知θ是第四象限角,且sin(θ+$\frac{π}{4}$)=$\frac{3}{5}$,则sinθ=-$\frac{\sqrt{2}}{10}$.tan(θ-$\frac{π}{4}$)=-$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某班50位学生期中考试数学成绩的频率直方分布图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中x的值;
(2)估计这次考试的平均分;
(3)估计这次考试的中位数(精确到0.1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了11月1日至11月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如表资料:
    日期11月1日11月2日11月3日11月4日11月5日
温差x(℃)    8   11  12   13   10
发芽数y(颗)   16   25  26   30   23
设农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是11月1日与11月5日的两组数据,请根据11月2日至11月4日的数据,求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
(注:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\hat a=\overline y-\hat b\overline x$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.正四面体ABCD的体积为V,P是正四面体ABCD内部的一个点.
(1)设“VP-ABC≥$\frac{1}{4}$V”为事件X,求概率P(X)
(2)设“VP-ABC≥$\frac{1}{4}$V且VP-BCD≥$\frac{1}{4}$V”为事件Y,求概率P(Y)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an},{bn},{cn},满足a1=8,b1=10,c1=6,且an+1=an,bn+1=$\frac{{c}_{n}+{a}_{n}}{2}$,cn+1=$\frac{{b}_{n}+{a}_{n}}{2}$,则bn=2×(-$\frac{1}{2}$)n-1+8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知锐角△ABC的内角A,B,C的对边分别为a,b,c,若sin A=$\frac{3}{5}$,cos C=$\frac{5}{13}$,a=1,则b=(  )
A.$\frac{13}{21}$B.$\frac{21}{13}$C.$\frac{11}{13}$D.$\frac{13}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=cos4x-sin4x+2的最小周期是(  )
A.πB.C.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\vec a$=${\vec e_1}$-$2{\vec e_2}$,$\vec b$=$3{\vec e_1}$+${\vec e_2}$,其中${\vec e_1}$=(1,0),${\vec e_2}$=(0,1),求:
(1)$\vec a•\vec b$;
(2)$\vec a$与$\vec b$夹角的正弦值.

查看答案和解析>>

同步练习册答案