| A. | $\frac{13}{21}$ | B. | $\frac{21}{13}$ | C. | $\frac{11}{13}$ | D. | $\frac{13}{11}$ |
分析 由已知利用同角三角函数基本关系式可求cosA,sinC的值,利用三角形内角和定理,两角和的正弦函数公式可求sinB,进而利用正弦定理即可解得b的值.
解答 解:因为△ABC为锐角三角形,sinA=$\frac{3}{5}$,cosC=$\frac{5}{13}$,
所以cosA=$\frac{4}{5}$,sinC=$\frac{12}{13}$,
于是sinB=sin(A+C)=sinAcosC+cosAsinC=$\frac{3}{5}$×$\frac{5}{13}$+$\frac{4}{5}$×$\frac{12}{13}$=$\frac{63}{65}$.
又由$\frac{a}{sinA}$=$\frac{b}{sinB}$,a=1,
可得b=$\frac{asinB}{sinA}$=$\frac{21}{13}$.
故选:B.
点评 本题主要考查了同角三角函数基本关系式,三角形内角和定理,两角和的正弦函数公式,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 圆心(-2,0),r=4 | B. | 圆心(2,0),r=2 | C. | 圆心(0,2),r=4 | D. | 圆心(0,-2),r=2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com