精英家教网 > 高中数学 > 题目详情
20.下列图象中,有一个是函数$f(x)=\frac{1}{3}{x^3}+a{x^2}+({a^2}-1)x+1(a∈$R,a≠0)的导函数f′(x)的图象,则f(-1)=-$\frac{1}{3}$
A、  B、   C、   D、

分析 求出导函数,根据导函数的二次项系数为正得到图象开口向上;利用函数解析式中有2ax,可得函数不是偶函数,得到函数的图象.再根据对称轴以及f′(0)=0求得a的值,可得f(x)的解析式,从而求得f(-1)的值.

解答 解:∵f′(x)=x2+2ax+(a2-1),∴导函数f′(x)的图象开口向上.
又∵a≠0,∴f(x)不是偶函数,其图象不关于y轴对称,
其图象必为第三张图.由图象特征知f′(0)=0,且对称轴为x=-a>0,∴a=-1,f(x)=$\frac{1}{3}$•x3-x2+1.
故f(-1)=-$\frac{1}{3}$-1+1=-$\frac{1}{3}$,
故答案为:-1.

点评 本题考查导函数的运算法则、二次函数的图象与二次函数系数的关系:开口方向与二次项系数的符号有关、对称轴公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知曲线C:y=x+$\frac{1}{x}$
(1)求证:曲线C上的各点处的切线的斜率小于1;
(2)求曲线C上斜率为0的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax3+bx2(x∈R)的图象过点P(-1,2),且在点P处的切线恰好与直线x-3y=0垂直.
(1)求函数f(x)的解析式;
(2)若函数f(x)在区间[m,m+1]上单调递增,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,E是棱CC1上的动点,F是AB中点,AC=BC=2,AA1=4.
(Ⅰ)求证:CF⊥平面ABB1
(Ⅱ)试确定点E的位置,使得CF∥面AEB1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知一组数据x1,x2,x3,x4,x5的平均数是2,方差是13,那么另一组数据3x1-2,3x3-2,3x3-2,3x4-2,3x5-2的平均数和方差分别是4,117.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\left\{\begin{array}{l}{e}^{x}-2\\(1-2a)x+2a\end{array}\right.\begin{array}{c}x≤0\\,x>0\end{array}\right.$对任意x1≠x2,都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$>0成立,则实数a的取值范围是.[$-\frac{1}{2},\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知关于x不等式|2x+a|>|x-1|在区间[2,3]上恒成立,则实数a的取值范围为a<-8或a>-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,D为BC的中点,则$\overrightarrow{AD}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,将命题类比到三棱锥中去得到一个类比的命题为在四面体A-BCD中,G为△BCD的重心,则有$\overrightarrow{AG}=\frac{1}{3}(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{1-lnx}{x^2}$.
(Ⅰ)求函数f(x)的零点及单调区间;
(Ⅱ)求证:曲线y=$\frac{lnx}{x}$存在斜率为6的切线,且切点的纵坐标y0<-1.

查看答案和解析>>

同步练习册答案