精英家教网 > 高中数学 > 题目详情

【题目】如图,在正四棱柱中,底面边长为,侧棱长为4分别为棱的中点,

1)求直线与平面所成角的大小;

2)求点到平面的距离

【答案】1;(2

【解析】

(1) 先证明平面,可得就是所求的角,解三角形即可;(2)求点D1到平面B1EF的距离,根据(2)中证出的平面B1EF⊥平面BDD1B1,只要过D1作交线B1G的垂线就得到点到面的距离,然后通过直角三角形求解

(1)设EFDB交于点G,连接,连结AC,由已知,EF//AC,ACBD.

EFBD.又,,

EF⊥平面,易得平面, 就是所求的角,

,,

直线与平面所成角的大小为.

(2)连接,,H为垂足,

由于平面平面为交线,

平面. 的长是点到平面的距离,

中, ,

,

,所以点到平面的距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆)的离心率为,短轴长为.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)若直线与椭圆交于不同的两点,且线段的垂直平分线过定点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点作一直线与双曲线相交于两点,若中点,则( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某软件公司新开发一款学习软件,该软件把学科知识设计为由易到难共12关的闯关游戏.为了激发闯关热情,每闯过一关都奖励若干慧币(一种网络虚拟币).该软件提供了三种奖励方案:第一种,每闯过一关奖励80慧币;第二种,闯过第一关奖励8慧币,以后每一关比前一关多奖励8慧币;第三种,闯过第一关奖励1慧币,以后每一关比前一关奖励翻一番(即增加1倍).游戏规定:闯关者须于闯关前任选一种奖励方案.已知一名闯关者冲关数一定超过3关但不会超过9关,为了得到更多的慧币,他应如何选择奖励方案?

A.选择第一种奖励方案B.选择第二种奖励方案

C.选择第三种奖励方案D.选择的奖励方案与其冲关数有关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的右焦点为,左顶点为,线段的中点为,圆过点,且与交于是等腰直角三角形,则圆的标准方程是____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】红铃虫是棉花的主要害虫之一,能对农作物造成严重伤害,每只红铃虫的平均产卵数y和平均温度x有关,现收集了以往某地的7组数据,得到下面的散点图及一些统计量的值.(表中

平均温度

21

23

25

27

29

32

35

平均产卵数/

7

11

21

24

66

115

325

27.429

81.286

3.612

40.182

147.714

1)根据散点图判断,(其中自然对数的底数)哪一个更适宜作为平均产卵数y关于平均温度x的回归方程类型?(给出判断即可,不必说明理由)并由判断结果及表中数据,求出yx的回归方程.(计算结果精确到小数点后第三位)

2)根据以往统计,该地每年平均温度达到28℃以上时红铃虫会造成严重伤害,需要人工防治,其他情况均不需要人工防治,记该地每年平均温度达到28℃以上的概率为.

①记该地今后5年中,恰好需要3次人工防治的概率为,求的最大值,并求出相应的概率p.

②当取最大值时,记该地今后5年中,需要人工防治的次数为X,求X的数学期望和方差.

附:线性回归方程系数公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦点为,离心率为,点P为椭圆C上一动点,且的面积最大值为O为坐标原点.

(1)求椭圆C的方程;

(2)设点为椭圆C上的两个动点,当为多少时,点O到直线MN的距离为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为(其中为参数),以原点为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求曲线的焦点的极坐标;

2)若曲线的上焦点为,直线与曲线交于两点,,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为实数,为自然对数的底数.

1)求函数的单调区间;

2)是否存在实数,使得对任意给定的,在区间上总存在三个不同的,使得成立?若存在,求出实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案