精英家教网 > 高中数学 > 题目详情
已知
a
b
均为单位向量,它们的夹角为
π
3
,则|
a
+
b
|=(  )
分析:根据|
a
+
b
|2=|
a
|2+|
b
|2+2
a
b
,而
a
b
均为单位向量,它们的夹角为
π
3
,再结合向量数量积的公式可得答案.
解答:解:由题意可得:|
a
+
b
|2=|
a
|2+|
b
|2+2
a
b

a
b
均为单位向量,它们的夹角为
π
3

∴|
a
+
b
|2=|
a
|2+|
b
|2+2
a
b
=1+1+2×1×1×cos
π
3
=3,
∴|
a
+
b
|=
3

故选C.
点评:本题主要考查向量模的计算公式与向量数量积的公式,解决此类问题的关键是熟练记忆公式并且细心认真的运算即可得到全分.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有两个质点A、B分别位于直角坐标系点(0,0),(1,1),从某一时刻开始,每隔1秒,质点分别向上下左右任一方向移动一个单位,已知质点A向左右移动的概率都是
1
4
,向上移动的概率为
1
3
,向下移动的概率为x;质点B向四个方向移动的概率均为y.
(1)求x和y的值;
(2)试问至少经过几秒,A、B能同时到达点C(2,1),并求出在最短时间内同时到达点C的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•菏泽二模)已知函数①y=sinx+cosx,②y=2
2
sinxcosx,则下列结论正确的是(  )

查看答案和解析>>

科目:高中数学 来源:高考零距离 二轮冲刺优化讲练 数学 题型:013

已知ab,且它们均为单位向量,则∠AOB的平分线上的单位向最

[  ]

A.

B.

C.

D.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面上有两个质点A(0,0), B(2,2),在某一时刻开始每隔1秒向上下左右任一方向移动一个单位。已知质点A向左,右移动的概率都是,向上,下移动的概率分别是和P, 质点B向四个方向移动的概率均为q:

 (1)求P和q的值;

 (2)试判断至少需要几秒,A,B能同时到达D(1,2),并求出在最短时间同时到达的概率?

查看答案和解析>>

科目:高中数学 来源:2013年山东省菏泽市高考数学二模试卷(文科)(解析版) 题型:选择题

已知函数①y=sinx+cosx,②y=2sinxcosx,则下列结论正确的是( )
A.两个函数的图象均关于点(-,0)成中心对称
B.①的纵坐标不变,横坐标扩大为原来的2倍,再向右平移个单位即得②
C.两个函数在区间(-)上都是单调递增函数
D.两个函数的最小正周期相同

查看答案和解析>>

同步练习册答案