精英家教网 > 高中数学 > 题目详情
如图,在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC.
(1)求证:PC⊥AB;
(2)求点C到平面APB的距离.
考点:点、线、面间的距离计算,直线与平面垂直的性质
专题:空间位置关系与距离,空间角
分析:(1)取AB中点D,连结PD,CD.证明AB⊥平面PCD,然后证明PC⊥AB;
(2)过C作CH⊥PD,垂足为H.说明CH的长即为点C到平面APB的距离,通过求解Rt△PCD,即可求点C到平面APB的距离.
解答: 解:(1)取AB中点D,连结PD,CD.∵AP=BP,∴PD⊥AB.
∵AC=BC,∴CD⊥AB.∵PD∩CD=D,∴AB⊥平面PCD.
∵PC?平面PCD,∴PC⊥AB.
(2)由(1)知AB⊥平面PCD,∴平面APB⊥平面PCD.
过C作CH⊥PD,垂足为H.
∵平面APB∩平面PCD=PD,∴CH⊥平面APB.
∴CH的长即为点C到平面APB的距离.
由(1)知PC⊥AB,又PC⊥AC,且AB∩AC=A,∴PC⊥平面ABC.
∵CD?平面ABC,∴PC⊥CD.
在Rt△PCD中,CD=
1
2
AB=
2
PD=
3
2
PB=
6

PC=
PD2-CD2
=2
CH=
PC×CD
PD
=
2
3
3
. 
∴点C到平面APB的距离为
2
3
3
点评:本题考查点到平面的距离的求法,直线与平面垂直的判定定理的应用,考查空间想象能力以及逻辑推理能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知方程组
x-2y=z-2u
2yz=ux
对此方程组的每一组正实数解(x,y,z,u),其中z≥y,都存在正实数M,且满足M≤
z
y
,则M的最大值是(  )
A、1
B、3+2
2
C、6+4
2
D、3-2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1的棱长为1,P、Q分别是正方形AA1D1D和A1B1C1D1的中心.
(1)证明:PQ∥平面DD1C1C;     
(2)求PQ与平面AA1D1D所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x-2|-|x-5|,
(1)求函数f(x)的值域;
(2)解不等式f(x)≥x2-8x+15.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在棱长为1的正方体ABCD-A1B1C1D1中,M,N分别是线段AB1和BD上的点,且AM=BN=t(0<t<
2

(1)求|MN|的最小值
(2)当|MN|达到最小值时,
MN
AB
1
BD
是否都垂直,如果都垂直给出证明;如果不是都垂直说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(x2-
1
x
)n
的展开式中含x的项为第6项,且(1-x+2x2)n=a0+a1x+a2x2+…+a2nx2n
(1)求n的值;
(2)求a1+a2+…+a2n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设P(x,y)是角θ的终边上任意一点,其中x≠0,y≠0,并记r=
x2+y2
.若定义cotθ=
x
y
secθ=
r
x
cscθ=
r
y

(Ⅰ)求证sin2θ+cos2θ-tan2θ-cot2θ+sec2θ+csc2θ是一个定值,并求出这个定值;
(Ⅱ)求函数f(θ)=|sinθ+cosθ+tanθ+cotθ+secθ+cscθ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x2-x-2
的定义域为集合A,函数g(x)=lg(
3
x
-1)
的定义域为集合B,已知p:x∈A∩B;q:x满足2x+m<0,且若p则q为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,边长为3的正方形ABCD中
(1)点E、F分别是AB、BC上的点,将△BEF,△AED,△DCF分别沿EF、DE、DF折起,使A、B、C三点重合于点P,求PD与平面EFD所成角的正弦值;
(2)当BE=BF=
1
3
BC时,将△AED,△DCF分别沿DE、DF折起,使A、C两点重合于点Q,求点E到平面QDF的距离.

查看答案和解析>>

同步练习册答案