精英家教网 > 高中数学 > 题目详情
已知函数f(x)=|x-2|-|x-5|,
(1)求函数f(x)的值域;
(2)解不等式f(x)≥x2-8x+15.
考点:绝对值不等式的解法,函数的值域,其他不等式的解法
专题:计算题,不等式的解法及应用
分析:(1)通过对自变量x范围的讨论,去掉绝对值符号,利用函数的性质即可求得函数f(x)的值域;
(2)通过对自变量x范围的讨论,去掉绝对值符号,再解相应的二次不等式即可.
解答: 解:(1)∵f(x)=|x-2|-|x-5|,
∴当x≤2时,f(x)=2-x-(5-x)=-3;
当2<x<5时,f(x)=x-2-(5-x)=2x-7∈(-3,3);
当x≥5时,f(x)=x-2-(x-5)=3;
综上所述,函数f(x)的值域为[-3,3];
(2)∵|x-2|-|x-5|≥x2-8x+15,
∴当x≤2时,x2-8x+15≤-3,
解得x∈∅;
当2<x<5时,有x2-8x+15≤2x-7,
解得5-
3
≤x<5;
当x≥5时,有x2-8x+15≤3,
即得5≤x≤6,
综上所述,原不等式的解集为{x|5-
3
≤x≤6}.
点评:本题考查绝对值不等式的解法,突出考查转化思想与分类讨论思想的综合应用,考查解一元二次不等式的运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法正确的个数(  )
①任何一个算法都包含顺序结构;
②条件结构中一定包含循环结构;
③循环结构中一定包含条件结构;
④算法可以无限地操作不停止.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点P到点F(2,0)的距离与到直线l:x=
1
2
的距离之比为2.
(1)求点P的轨迹C的方程;
(2)直线l的方程为x+y-2=0,l与曲线C交于A,B两点.求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,菱形ABCD的边长为4,∠BAD=60°,AC∩BD=O,将菱形ABCD沿对角线AC折起,得到三棱锥B-ACD,点M是棱BC的中点,且DM=2
2

(1)求证:OM∥平面ABD;
(2)求证:平面DOM⊥平面ABC;  
(3)求点B到平面DOM的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+Φ),x∈R(其中A>0,ω>0,0<Φ<
π
2
)的图象与x轴的交点中,相邻两个交点之间的距离为
π
2
,且图象上一个最低点为M(
3
,-2).
(1)求f(x)的解析式及单调增区间;
(2)当x∈[0,
π
12
]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
x2-1

(1)求函数f(x)的定义域、值域;
(2)判断函数f(x)的奇偶性;
(3)指出函数f(x)的单调区间并就其中一种情况加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC.
(1)求证:PC⊥AB;
(2)求点C到平面APB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在长方体ABCD-A1B1C1D1中,AA1=2,AB=AD=1,点M是CC1的中点,
①求证:平面ABM⊥平面A1B1M;
②求直线BD与平面ABM所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,矩形ABCD中,AB=12,AD=6,E、F分别为CD、AB边上的点,且DE=3,BF=4,将△BCE沿BE折起至△PBE位置(如图2所示),连结AP、PF,其中PF=2
5

(Ⅰ) 求证:PF⊥平面ABED;
(Ⅱ) 在线段PA上是否存在点Q使得FQ∥平面PBE?若存在,求出点Q的位置;若不存在,请说明理由.
(Ⅲ) 求点A到平面PBE的距离.

查看答案和解析>>

同步练习册答案