精英家教网 > 高中数学 > 题目详情
如图2-3-19,已知AB是圆O的直径,C是圆周上不同于A、B的点,PA垂直于圆O所在平面,AE⊥PB于E,AF⊥PF于F.

图2-3-19

求证:平面AEF⊥平面PBC.

证明:∵AB为⊙O的直径,

∴BC⊥AC.

∵PA⊥面ABC,BC面ABC,∴PA⊥BC.

∵PA∩AC=A,

∴BC⊥平面PAC.

而AF平面PAC,∴BC⊥AF.

又AF⊥PC,BC∩PC=C,

∴AF⊥平面PBC.

∵PB平面PBC,∴AF⊥PB.

又∵AE⊥PB,AE∩AF=A,

∴PB⊥平面AEF.

∵PB平面PBC,∴平面AEF⊥平面PBC.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•安徽模拟)为了了解某年级1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14);第二组[14,15);…;第五组[17,18].按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前3个组的频率之比为3:8:19,且第二组的频数为8.
(1)请估计该年级学生中百米成绩在[16,17)内的人数;
(2)求调查中共随机抽取了多少个学生的百米成绩;
(3)若从第一、五组中随机取出两个学生的成绩,记为m,n,若m,n都在区间[13,14]上,则得4分,若m,n都在区间[17,18]上,则得2分,否则得0分,用X表示得分,求X的分布列并计算期望.

查看答案和解析>>

科目:高中数学 来源:2013届福建省高二下学期期中考试文科数学试卷(解析版) 题型:解答题

(本题满分12分)

为了解某年段1000名学生的百米成绩情况,随机抽取了若干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组[13,14);第二组[14,15);……;第五组[17,18].按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前3个组的频率之比为3∶8∶19,且第二组的频数为8.

(1)将频率当作概率,请估计该年段学生中百米成绩在[16,17)内的人数;

(2)求调查中随机抽取了多少个学生的百米成绩;

(3)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1秒的概率.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三上学期摸底考试文科数学 题型:解答题

(本题满分12分)为了了解某年段1000名学生的百米成绩情况,随机抽取了若

干学生的百米成绩,成绩全部介于13秒与18秒之间,将成绩按如下方式分成五组:第一组

[13,14);第二组[14,15);……;第五组[17,18].按上述分组方法得到的频率分布直方图如

图所示,已知图中从左到右的前3个组的频率之比为3∶8∶19,且第二组的频数为8.

(1)将频率当作概率,请估计该年段学生中百米成绩在[16,17)内的人数;

(2)求调查中随机抽取了多少个学生的百米成绩;

(3)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1秒的概率.

 

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图2-4-19,已知C点在⊙O直径BE的延长线上,CA切⊙OA点,∠BAC的平分线交AEF点,∠BCA的平分线交ABD点.

图2-4-19

(1)求∠ADF的度数.

(2)若∠ACB的度数为y度,∠B的度数为x度,那么yx之间有怎样的关系?试写出你的猜测并给出证明.

(3)若AB =AC,求ACBC.

查看答案和解析>>

同步练习册答案