精英家教网 > 高中数学 > 题目详情
18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,斜率k(k≥0)的直线l过椭圆中心O且与椭圆的两个交点从左至右为E,G,与直线l垂直的直线m与椭圆的两个交点,从上至下为F,H,当四边形EFGH为正方形时面积为$\frac{8}{3}$.
(1)求椭圆的方程;
(2)求四边形EFGH的面积S的取值范围.

分析 (1)当四边形EFGH为正方形时面积为$\frac{8}{3}$,G的坐标为($\frac{\sqrt{6}}{3}$,$\frac{\sqrt{6}}{3}$),代入椭圆方程,结合椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,求出a,b,即可求椭圆的方程;
(2)分类讨论,求出面积,利用基本不等式求四边形EFGH的面积S的取值范围.

解答 解:(1)当四边形EFGH为正方形时面积为$\frac{8}{3}$,G的坐标为($\frac{\sqrt{6}}{3}$,$\frac{\sqrt{6}}{3}$),
代入椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1,可得$\frac{2}{3{a}^{2}}+\frac{2}{3{b}^{2}}=1$,
∵椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,
∴$\frac{{a}^{2}-{b}^{2}}{{a}^{2}}$=$\frac{1}{2}$,
∴a=$\sqrt{2}b$,
∴b=1,a=$\sqrt{2}$,
∴椭圆的方程为$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(2)k≠0,设直线EG的方程为y=kx,代入椭圆方程,可得G($\sqrt{\frac{2}{1+2{k}^{2}}}$,$\sqrt{\frac{2}{1+2{k}^{2}}}$),
同理F(-$\sqrt{\frac{2{k}^{2}}{{k}^{2}+2}}$,$\sqrt{\frac{2{k}^{2}}{{k}^{2}+2}}$),
∴四边形EFGH的面积S=4×$\frac{1}{2}$×$\sqrt{\frac{2}{1+2{k}^{2}}}$×$\sqrt{\frac{2{k}^{2}}{{k}^{2}+2}}$=$\sqrt{\frac{{k}^{2}}{(1+2{k}^{2})({k}^{2}+2)}}$=$\sqrt{2{k}^{2}+\frac{2}{{k}^{2}}+5}$≥$\sqrt{5+4}$=3,
k=0时,S=4×$\frac{1}{2}×\sqrt{2}×1$=2$\sqrt{2}$.
∴四边形EFGH的面积S的取值范围是[3,+∞).

点评 本题考查椭圆方程,考查直线与 椭圆的位置关系,考查面积的计算,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.将函数y=sin(2x+$\frac{π}{6}$)的图象向右平移φ(0<φ<$\frac{π}{2}$)个单位后,得到函数f(x)的图象,若函数f(x)是偶函数,则φ的值等于$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知奇函数y=f(x)在x<0时是减函数,求证:y=f(x)在x>0时也是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)=x2-x+k(k∈N),若函数g(x)=f(x)-2在区间(-1,$\frac{3}{2}$)内有两个零点,则k=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.计算;
(1)7$\root{3}{3}$-3$\root{3}{24}$一6$\root{3}{\frac{1}{9}}$+$\root{4}{3\root{3}{3}}$ 
(2)(0.0081)${\;}^{-\frac{1}{4}}$一[3×($\frac{7}{8}$)0]-1×[81-0.25+($\frac{27}{8}$)${\;}^{-\frac{1}{3}}$]${\;}^{-\frac{1}{2}}$-10×0.027${\;}^{\frac{1}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则当CQ∈(0,$\frac{1}{2}$]∪{1}.时,S为四边形;当CQ=$\frac{1}{2}$时S为等腰梯形;当CQ=1时,S的面积为$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,设A是棱长为2的正方体的一个顶点,过从顶点A出发的三条棱的中点作截面,对正方体的所有顶点都如此操作,截去8个三棱锥,所得的各截面与正方体各面共同围成一个多面体,则关于此多面体有以下结论:
①有24个顶点;②有36条棱;③有14个面;④表面积为12;⑤体积为$\frac{20}{3}$.
正确的有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=ax2+$\frac{2}{x}$(a∈R)
(1)若函数f(x)为奇函数,求实数a的值;
(2)若f(1)=3,判断函数f(x)在区间[1,+∞)上的单调性,并用定义法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$\overrightarrow{e_1}=(1,0)$,$\overrightarrow{e_2}=(0,1)$,$\overrightarrow a=3\overrightarrow{e_1}-2\overrightarrow{e_2}$,$\overrightarrow b=4\overrightarrow{e_1}+\overrightarrow{e_2}$,则$|\overrightarrow a+\overrightarrow b|$=(  )
A.$3\sqrt{2}$B.$4\sqrt{2}$C.$5\sqrt{2}$D.$5\sqrt{3}$

查看答案和解析>>

同步练习册答案