精英家教网 > 高中数学 > 题目详情
8.将函数y=sin(2x+$\frac{π}{6}$)的图象向右平移φ(0<φ<$\frac{π}{2}$)个单位后,得到函数f(x)的图象,若函数f(x)是偶函数,则φ的值等于$\frac{π}{3}$.

分析 由条件利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数、余弦函数的图象的对称性,求得φ的值.

解答 解:将函数y=sin(2x+$\frac{π}{6}$)的图象向右平移φ(0<φ<$\frac{π}{2}$)个单位后,得到函数f(x)=sin[2(x-φ)+$\frac{π}{6}$]=sin(2x-2φ+$\frac{π}{6}$)的图象,
若函数f(x)是偶函数,则-2φ+$\frac{π}{6}$=kπ+$\frac{π}{2}$,即 φ=-$\frac{kπ}{2}$-$\frac{π}{6}$,k∈Z,∴φ=$\frac{π}{3}$,
故答案为:$\frac{π}{3}$.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数、余弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.下列叙述正确的是(  )
A.方程x2-2x+1=0的根构成的集合为{1,1}
B.{x∈R|x2+1=0}={x∈R|$\left\{\begin{array}{l}{2x+4>0}\\{x+3<0}\end{array}\right.$}
C.集合M={(x,y)|x+y=5且2x-y=0}表示的集合是{2,3}
D.集合{1,2,3}与集合{3,2,1}是不同的集合

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设α∈R,f(x)=a-$\frac{2}{{2}^{x}+1}$(x∈R).
(1)证明对任意实数a,f(x)为增函数.
(2)试确定a的值,使f(x)≤0恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数y=f(x)是定义在(0,+∞)上的减函数,并且满足f(xy)=f(x)+f(y),f($\frac{1}{3}$)=1.
(1)求f(1)的值;
(2)若存在实数m,使得f(m)=2,求m的值;
(3)若f(x-2)>2,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知sinα=$\frac{1}{4}$,α∈($\frac{π}{2}$,π),则tanα=-$\frac{\sqrt{15}}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=mx-sinx-cosx,g(x)=(ax-1)cosx-2sinx(a>0).
(Ⅰ)若函数y=f(x)在(-∞,+∞)上是单调递减函数,求实数m的最大值;
(Ⅱ)若m=1,且对于任意x∈[0,$\frac{π}{2}$],都有不等式f(x)≥g(x)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知P={x|x2-$\frac{3}{2}$x+$\frac{1}{2}$≤0},S={x|x2-(2a+1)x+a(a+1)≤0}
(1)否存在实数a,使x∈P是x∈S的充要条件,若存在,求出a的范围;
(2)是否存在实数a,使x∈P是x∈S的必要不充分条件,若存在,求出a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.用列举法表示集合{x∈Z|-2<x<4}={-1,0,1,2,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,斜率k(k≥0)的直线l过椭圆中心O且与椭圆的两个交点从左至右为E,G,与直线l垂直的直线m与椭圆的两个交点,从上至下为F,H,当四边形EFGH为正方形时面积为$\frac{8}{3}$.
(1)求椭圆的方程;
(2)求四边形EFGH的面积S的取值范围.

查看答案和解析>>

同步练习册答案