精英家教网 > 高中数学 > 题目详情
16.设函数y=f(x)是定义在(0,+∞)上的减函数,并且满足f(xy)=f(x)+f(y),f($\frac{1}{3}$)=1.
(1)求f(1)的值;
(2)若存在实数m,使得f(m)=2,求m的值;
(3)若f(x-2)>2,求x的取值范围.

分析 (1)令x=y=1,即可求得f(1);(2)令x=y=$\frac{1}{3}$,即可得到m=2:
(3)由(2)的结论和函数y=f(x)是定义在(0,+∞)上的减函数,可得x的不等式组,解不等式即可得到所求范围.

解答 解:(1)令x=y=1则f(1)=f(1)+f(1),
∴f(1)=0;    
(2)∵f($\frac{1}{3}$)=1,
∴f($\frac{1}{9}$)=f($\frac{1}{3}$×$\frac{1}{3}$)=f($\frac{1}{3}$)+f($\frac{1}{3}$)=2,
∴m=$\frac{1}{9}$;     
(3)∵f(x-2)>2=f($\frac{1}{9}$),
函数y=f(x)是定义在(0,+∞)上的减函数,
∴$\left\{\begin{array}{l}{x-2>0}\\{x-2<\frac{1}{9}}\end{array}\right.$,解得2<x<$\frac{19}{9}$.

点评 本题考查抽象函数的运用:求函数值和自变量的值,考查赋值法的运用,同时考查单调性的运用:解不等式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.先将函数$f(x)=cos(2x-\frac{π}{6})+1$的图象上所有点向右平移$\frac{π}{4}$个单位,再向上平移1个单位后得到函数y=g(x)的图象,则下列正确的是(  )
A.f(x)的周期是$\frac{π}{2}$B.$f(x+\frac{π}{12})$是奇函数
C.g(x)的图象关于点$(\frac{7π}{12},0)$对称D.g(x)在区间$[0,\frac{π}{3}]$上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x-1|+|x-2|,若不等式|a+b|+|a-b|≥|a|f(x)对任意a,b∈R恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.对于函数y=log${\;}_{\frac{1}{2}}$(x2-6x+5).
(1)求它的定义域、值域;
(2)确定函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=$\frac{2}{\sqrt{x+1}}$的定义域是(-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x-3y-6=0,点T(-1,1)在AD边所在直线上.
(1)求AD边所在直线的方程;
(2)若直线l:ax+y+b+1=0平分矩形ABCD的面积,求出原点与(a,b)距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.将函数y=sin(2x+$\frac{π}{6}$)的图象向右平移φ(0<φ<$\frac{π}{2}$)个单位后,得到函数f(x)的图象,若函数f(x)是偶函数,则φ的值等于$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x)=$\left\{\begin{array}{l}(2a-1)x+4a,x<1\\-x+1,x≥1\end{array}$是定义在R上的减函数,则a的取值范围是(  )
A.$[\frac{1}{6},\frac{1}{2})$B.$[\frac{1}{3},\frac{1}{2}]$C.$(\frac{1}{6},\frac{1}{2}]$D.$[\frac{1}{3},\frac{1}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)=x2-x+k(k∈N),若函数g(x)=f(x)-2在区间(-1,$\frac{3}{2}$)内有两个零点,则k=2.

查看答案和解析>>

同步练习册答案