精英家教网 > 高中数学 > 题目详情
在三棱锥SABC中,底面是边长为2的正三角形,点S在底面ABC上的射影O恰是AC的中点,侧棱SB和底面成45°角.

(1)若D为侧棱SB上一点,当为何值时,CD⊥AB;
(2)求二面角S-BC-A的余弦值大小.
(1)(2)
以O点为原点,OB为x轴,OC为y轴,OS为z轴建立空间直角坐标系O-xyz.

由题意知∠SBO=45°,SO=3.O(0,0,0),C(0,,0),A(0,-,0),S(0,0,3),B(3,0,0).
(1)设=λ(0≤λ≤1),则=(1+λ)+λ=(3(1+λ),0,3λ),
所以=(3(1-λ),-,3λ).
因为=(3,,0),CD⊥AB,所以·=9(1-λ)-3=0,解得λ=.
时,CD⊥AB.
(2)平面ACB的法向量为n1=(0,0,1),设平面SBC的法向量n2=(x,y,z),则n2·=0,n2·=0,则解得n2=(1,,1),
所以cos〈n1n2〉=.
又显然所求二面角的平面角为锐角,故所求二面角的余弦值的大小为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在四棱锥P-ABCD中,侧面PCD底面ABCD,PDCD,底面ABCD是直角梯形,AB∥DC,

(1)求证:BC平面PBD:
(2)求直线AP与平面PDB所成角的正弦值;
(3)设E为侧棱PC上异于端点的一点,,试确定的值,使得二面角E-BD-P的余弦值为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,在△ABC中,BC=3,AC=6,∠C=90°,且DE∥BC,将△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如图2。

(1)求证:BC⊥平面A1DC;
(2)若CD=2,求BE与平面A1BC所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1

(1)证明:AB=AC
(2)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱中,△ABC是正三角形,,平面平面.

(1)证明:
(2)证明:求二面角的余弦值;
(3)设点是平面内的动点,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在空间直角坐标系O-xyz中,平面OAB的一个法向量为n=(2,-2,1),已知点P(-1,3,2),则点P到平面OAB的距离d等于                  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.

(1)求异面直线A1B与C1D所成角的余弦值;
(2)求平面ADC1与平面ABA1所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若abc三个向量共面,则实数λ等于________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正四棱锥P-ABCD的所有棱长都是2,底面正方形两条对角线相交于O点,M是侧棱PC的中点.

(1)求此正四棱锥的体积.
(2)求直线BM与侧面PAB所成角θ的正弦值.

查看答案和解析>>

同步练习册答案