分析 (1)设等差数列{an}的公差为d,由题意得(1+2d)2=1+12d,求出公差d的值,即可得到数列{an}的通项公式.
(2)利用等差数列的求和公式求得S3n,然后利用裂项相消法求和即可.
解答 解:(1)设{an}的公差为d,依题意得$\left\{{\begin{array}{l}{{a_1}+d=3}\\{{{({{a_1}+2d})}^2}={a_1}({{a_1}+6d})}\\{d≠0}\end{array}}\right.$,
解得$\left\{\begin{array}{l}{{a}_{1}=2}\\{d=1}\end{array}\right.$,
所以an=2+(n-1)×1=n+1;
(2)由(1)知,等差数列{an}的首项是2,公差是1,
则S3n=3n×2+$\frac{3n•(3n-1)}{2}×1$=$\frac{9n(n+1)}{2}$,
∴${b_n}=\frac{9}{{2{S_{3n}}}}=\frac{9}{2}×\frac{2}{{9n({n+1})}}=\frac{1}{{n({n+1})}}=\frac{1}{n}-\frac{1}{n+1}$,
∴${T_n}={b_1}+{b_2}+…+{b_n}=({1-\frac{1}{2}})+({\frac{1}{2}-\frac{1}{3}})+…+({\frac{1}{n}-\frac{1}{n+1}})=1-\frac{1}{n+1}=\frac{n}{n+1}$,
故${T_n}=\frac{n}{n+1}$.
点评 本题主要考查等比数列的定义和性质,等比数列的通项公式,等差数列的通项公式,用裂项相消法进行求和,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | -742 | B. | -49 | C. | 18 | D. | 188 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2017 | B. | -8 | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 100 | B. | 50 | C. | $\frac{99}{2}$ | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 2 | C. | $\frac{4}{5}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com