分析 求出函数的导数,通过讨论a的范围,确定函数的单调区间,求出最大值和最小值,得到关于a的方程,解出即可.
解答 解:y′=f′(x)=3(x+1)(x-1),
∴函数在在(-∞,-1)递增,在(-1,1)递减,在(1,+∞)递增,
①a=0时,函数在[-1,1]递减,
函数的最大值是f(-1)=2,函数的最小值是f(1)=-2,
∴f(-1)-f(1)=2-(-2)=4,
故a=0符合题意;
②0<a<2时,1<a+1<3,-1<a-1<1,
∴函数在[a-1,1]递减,在(1,a+1]递增,
函数的最小值是f(1)=-2,
∵f(a+1)-f(a-1)=(a+1)3-3(a+1)-(a-1)3+3(a-1)=2(3a2-2),
令f(a+1)-f(a-1)=0,
解得a=$\frac{\sqrt{6}}{3}$,
当0<a<$\frac{\sqrt{6}}{3}$时,f(a+1)<f(a-1),
∴f(x)max=(a-1)3-3(a-1),
∴f(x)max-f(x)min=(a-1)3-3(a-1)-(-2)=4,
解得a=0或a=3,都舍去
当$\frac{\sqrt{6}}{3}$≤a<2时,
∴f(x)max=(a+1)3-3(a+1),
∴f(x)max-f(x)min=(a+1)3-3(a+1)-(-2)=4,
即(a-1)3-3(a-1)-2=0,
解得a=1,a=-2舍去,符合题意.
③a≥2时,f(x)在[a-1,a+1]递增,
∴f(x)min=f(a-1),f(x)max=f(a+1),
∴(a+1)3-3(a+1)-(a-1)3+3(a-1)=4,
解得:a=±$\sqrt{3}$,舍去,
综上:a=1或0.
故答案为:1或0
点评 本题考查了函数的单调性、最值问题,考查导数的应用,分类讨论思想,是一道中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com