精英家教网 > 高中数学 > 题目详情
求函数的切线与坐标轴围成的三角形面积的最大值。
解:∵过函数图象上任意一点的切线方程是
∴切线在轴和轴上的截距分别为.
∴切线与坐标轴围成的三角形面.  

.
时,为增函数;
时,为减函数.

所以函数的切线与坐标轴围成的三角形面积的最大值为.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ex+ax-1(e为自然对数的底数).
(I)当a=1时,求过点(1,f(1))处的切线与坐标轴围成的三角形的面积;
(II)若f(x)≥x2在(0,1 )上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•西城区二模)已知函数f(x)=(1-
ax
)ex(x>0)
,其中e为自然对数的底数.
(Ⅰ)当a=2时,求曲线y=f(x)在(1,f(1))处的切线与坐标轴围成的面积;
(Ⅱ)若函数f(x)存在一个极大值点和一个极小值点,且极大值与极小值的积为e5,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=(x-a)2lnx,a∈R,e为自然对数的底数,e=2.7182…
(1)如果x=e为函数y=f(x)的极大值点,求a的值;
(2)如果函数f(x)在x=e处的切线与坐标轴围成的三角形的面积等于2e3,求a的值;
(3)在(2)的条件下,当x∈[e,e2]时,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex(x>0)
,其中e为自然对数的底数.
(Ⅰ)当a=2时,求曲线(2
2
π
4
)
在(1,l:x=1)处的切线与坐标轴围成的面积;
(Ⅱ)若函数ρ=
22+22
=2
2
存在一个极大值点和一个极小值点,且极大值与极小值的积为e5,求a的值.

查看答案和解析>>

同步练习册答案