精英家教网 > 高中数学 > 题目详情
精英家教网椭圆C1
x2
4
+
y2
3
=1
的左准线为l,左、右焦点分别为F1、F2,抛物线C2的准线为l,焦点为F2,C1与C2的一个交点为P,则|PF2|的值等于(  )
A、
2
3
B、
4
3
C、2
D、
8
3
分析:P到椭圆的左准线的距离设为d,先利用椭圆的第二定义求得PF1|=
1
2
d,利用抛物线的定义可知|PF2|=d,最后根据椭圆的定义可知
|PF2|+|PF1|=4求得d,则|PF2|可得.
解答:解:椭圆的离心率为
1
2
,P到椭圆的左准线的距离设为d,则|PF1|=
1
2
d,|PF2|+|PF1|=4,又|PF2|=d,
∴d=|PF2|=
8
3

故选D.
点评:本题主要考查了椭圆的简单性质.解题的关键是灵活利用椭圆和抛物线的定义.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C1
x2
4
+
y2
3
=1
,抛物线C2:(y-m)2=2px(p>0),且C1、C2的公共弦AB过椭圆C1的右焦点.
(Ⅰ)当AB⊥x轴时,求m、p的值,并判断抛物线C2的焦点是否在直线AB上;
(Ⅱ)是否存在m、p的值,使抛物线C2的焦点恰在直线AB上?若存在,求出符合条件的m、p的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
4
+y2=1
,双曲线C2
x2
3
-y2=1
.若直线l:y=kx+
2
与椭圆C1、双曲线C2都恒有两个不同的交点,且l与C2的两交点A、B满足
OA
OB
<6
(其中O为原点),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杨浦区二模)如图,椭圆C1
x2
4
+y2=1,x轴被曲线C2:y=x2-b截得的线段长等于C1的长半轴长.
(1)求实数b的值;
(2)设C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A、B,直线MA、MB分别与C1相交与D、E.
①证明:MD•ME=0;
②记△MAB,△MDE的面积分别是S1,S2.若
S1
S2
=λ,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
4
+
y2
3
=1
,抛物线C2:(y-m)2=2px(p>0),且C1、C2的公共弦AB过椭圆C1的右焦点.
(1)当AB⊥x轴时,求p,m的值,并判断抛物线C2的焦点是否在直线AB上;
(2)若p=
4
3
且抛物线C2的焦点在直线AB上,求m的值及直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•唐山一模)已知椭圆C1
x24
+y2=1
和动圆C2x2+y2=r2(r>0),直线l:y=kx+m与C1和C2分别有唯一的公共点A和B.
(I)求r的取值范围;
(II )求|AB|的最大值,并求此时圆C2的方程.

查看答案和解析>>

同步练习册答案