精英家教网 > 高中数学 > 题目详情
命题“f(x)>0(x∈R)恒成立”的否定是(  )
A、?x∈R,f(x)<0
B、?x∈R,f(x)≤0
C、?x∈R,f(x)<0
D、?x∈R,f(x)≤0
考点:命题的否定
专题:简易逻辑
分析:利用全称命题的否定是特称命题写出结果即可.
解答: 解:因为全称命题的否定是特称命题,
所以命题“f(x)>0(x∈R)恒成立”的否定是:?x∈R,f(x)≤0.
故选:D.
点评:本题考查命题的否定特称命题与全称命题的否定关系,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-alnx,a∈R,g(x)=x2+(a+2)x+1,若a>0,且对任意x1∈[-1,2].都存在x2∈(0,+∞),使得g(x1)=f(x2),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

经过(2,3)且在两坐标轴上截距相反的直线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x+
π
6
)+
1
2
+m的图象过点(
12
,0)
(1)求实数m的值及f(x)的周期及单调递增区间;
(2)若x∈[0,
π
2
],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(x+a)+
1-a-x
ax+a2
,(a>0);
(Ⅰ)若a=1,求f(x)的最小值;
(Ⅱ)若y=f(x)有两个零点,求实数a的取值范围;
(Ⅲ)当a=1时方程f(x)=k(k>0)存在两个异号实根x1,x2;求证:x1+x2>0,其中[(ln(-x+1))′=
-1
-x+1
].

查看答案和解析>>

科目:高中数学 来源: 题型:

“m=-1”是“直线mx+(2m-1)y+1=0,和直线3x+my+9=0垂直”的(  )
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合S={x|x≥2},集合T={x|x≤5}为整数集,则S∩T=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知ABCD为直角梯形,∠DAB=∠ABC=90°,SA⊥平面ABCD,SA=AB=BC=1,AD=
1
2
,求平面SAB与SCD的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

若对满足不等式组
y≥1
y≤2x
2x+3y≤12
的任意实数x,y.都有2x+y≥k成立,则实数k的最大值为
 

查看答案和解析>>

同步练习册答案