精英家教网 > 高中数学 > 题目详情
“m=-1”是“直线mx+(2m-1)y+1=0,和直线3x+my+9=0垂直”的(  )
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既不充分也不必要条件
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据直线垂直的条件以及充分条件和必要条件的定义即可得到结论.
解答: 解:若直线mx+(2m-1)y+1=0,和直线3x+my+9=0垂直,则3m+m(2m-1)=0,
即2m(m+1)=0,
解得m=0或m=-1,
则“m=-1”是“直线mx+(2m-1)y+1=0,和直线3x+my+9=0垂直”的充分不必要条件,
故选:A
点评:本题主要考查充分条件和必要条件的判断,根据直线垂直的条件求出m是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中A(2,4),B(0,-2),C(-2,3).
(Ⅰ)求AB边垂直平分线所在直线方程;
(Ⅱ)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若∠A=45°,∠B=60°,BC=3
2
,则AC=(  )
A、4
3
B、3
3
C、2
3
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在复平面内,复数z1,z2对应的点分别是(11,-7),(1,-2),且
z1
z2
=x+yi(其中x,y∈R,i为虚数单位),则x+y的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“f(x)>0(x∈R)恒成立”的否定是(  )
A、?x∈R,f(x)<0
B、?x∈R,f(x)≤0
C、?x∈R,f(x)<0
D、?x∈R,f(x)≤0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足方程x2+y2-4x+1=0,求直线y=x+2上的点到圆的距离的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
2n2-m≤0
n>m≥0
,求n-2m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=6x2-x-2有极
 
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动圆M与⊙C(x+2)2+y2=2内切,且过点A(2,0),求动圆圆心M的轨迹方程.

查看答案和解析>>

同步练习册答案