精英家教网 > 高中数学 > 题目详情
已知实数x、y满足方程(x-3)2+(y-3)2=6,求x+y的最大值和最小值.
分析:设x+y=t,可得出直线y=-x+t与圆有公共点,即圆心到直线的距离小于等于圆的半径,利用点到直线的距离公式列出不等式,求出不等式的解集得到t的范围,求出t的最大值与最小值,即为x+y的最大值与最小值.
解答:解:设x+y=t,则直线y=-x+t与圆(x-3)2+(y-3)2=6有公共点,
|3+3-t|
2
6

∴6-2
3
≤t≤6+2
3

则x+y最小值为6-2
3
,最大值为6+2
3
点评:此题考查了直线与圆的位置关系,直线与圆的位置关系由d与r来判断:当d>r时,直线与圆相离;当d=r时,直线与圆相切;当d<r时,直线与圆相交(d为圆心到直线的距离,r为圆的半径).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数x、y满足方程x2+y2-4x+1=0.求
(1)
yx
的最大值和最小值;
(2)y-x的最小值;
(3)x2+y2的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x、y满足方程(x-a+1)2+(y-1)2=1,当0≤y≤b(b∈R)时,由此方程可以确定一个偶函数y=f(x),则抛物线y=-
12
x2
的焦点F到点(a,b)的轨迹上点的距离最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足方程(x-2)2+y2=3.
(1)求
yx
的最大值和最小值;
(2)求y-x的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足方程x2+y2-4x+1=0,求
yx
的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知实数x,y满足方程
(x-3)2+(y-1)2
=
|2x-y+1|
5
,则动点P(x,y)的轨迹是(  )

查看答案和解析>>

同步练习册答案