精英家教网 > 高中数学 > 题目详情
5.设数列{an}的前n项和为Sn,且nSn+(n+2)an=4n,则an=$\frac{n}{{2}^{n-1}}$.

分析 由${a}_{n}=\left\{\begin{array}{l}{{S}_{1}}&{n=1}\\{{S}_{n}-{S}_{n-1}}&{n≥2}\end{array}\right.$得到数列{an}的递推式,

解答 解:当n=1时,有S1+3a1=4a1=4,得:a1=1,
当n≥2,时,由nSn+(n+2)an=4n,即${S}_{n}+\frac{n+2}{n}{a}_{n}=4$①,得:
${S}_{n-1}+\frac{n+1}{n-1}{a}_{n-1}=4$②,
①-②得:${a}_{n}+\frac{n+2}{n}{a}_{n}-\frac{n+1}{n-1}{a}_{n-1}=0$,
即$\frac{{a}_{n}}{{a}_{n-1}}=\frac{n}{2(n-1)}$,
∴$\frac{{a}_{n}}{{a}_{1}}=\frac{{a}_{2}}{{a}_{1}}•\frac{{a}_{3}}{{a}_{2}}•…•\frac{{a}_{n}}{{a}_{n-1}}=\frac{1}{{2}^{n-1}}•\frac{2}{1}•\frac{3}{2}•…•\frac{n}{n-1}=\frac{1}{{2}^{n-1}}•n$,
即${a}_{n}=\frac{n}{{2}^{n-1}}$.
故答案为:$\frac{n}{{2}^{n-1}}$.

点评 本题考查数列通项公式的求法.解题关键是能根据Sn与an的关系得到数列的递推公式.考查了转化的思想方法.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.函数f(x)=$\sqrt{lo{g}_{\frac{1}{3}}x+2}$的定义域是(  )
A.(9,+∞)B.(0,$\frac{1}{9}$]C.[$\frac{1}{9}$,+∞)D.(0,9]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知全集U={0,1,2,3,4},集合M={0,3,4},N={0,1,2},则集合{1,2}可以表示为(  )
A.M∩NB.(∁UM)∩NC.M∩(∁UN)D.(∁UM)∩(∁UN)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a、b为两条不同的直线,α、β为两个不同的平面.下列命题中,正确的是(  )
A.若a⊥α,b∥β,a⊥b,则α⊥βB.若a⊥α,b∥β,a∥b,则α⊥β
C.若a⊥α,a⊥β,则α⊥βD.若a∥β,b∥β,a∥b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知等比数列{an}的公比q为正数,且${a_3}•{a_9}={({a_5})^2}$,则q等于(  )
A.1B.2C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a,b,c分别为△ABC三个内角A,B,C的对边,a=4,A=60°,B=45°,则边b的值为(  )
A.2$\sqrt{6}$B.2+2$\sqrt{2}$C.$\frac{4\sqrt{6}}{3}$D.2$\sqrt{3}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,直角三角形ABC中,∠C=90°,其内切圆与斜边AB相切于点D,若AD=3,BD=4,则△ABC的面积为12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.命题p:若xy≠6,则x≠2或y≠3;命题q:若方程x2-x+a=0有两个正根,则0<a≤$\frac{1}{4}$,那么  (  )
A.“p∨(¬q)”为假命题B.“(¬p)∨q”为假命题C.“p∧q”为真命题D.“¬(p∨q)”真命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图所示,正方体ABCD-A′B′C′D′的棱长为1,E,F分别是棱AA′,CC′的中点,过直线E,F的平面分别与棱BB′、DD′交于M,N,设BM=x,x∈[0,1],给出以下五个命题:
①平面MENF⊥平面BDD'B'
②四边形MENF的面积的最大值为2;
③多面体ABCD-MENF的体积为$\frac{1}{2}$;
④四棱锥C′-MENF的体积恒为定值$\frac{1}{3}$;
⑤直线MN与直线CC′所成角的正弦值的范围是[${\frac{{\sqrt{6}}}{3}$,1]
以上命题中正确的有①③④⑤.

查看答案和解析>>

同步练习册答案