精英家教网 > 高中数学 > 题目详情

已知x轴上的一定点A(10)Q为椭圆上的动点,求AQ中点M的轨迹方程.

答案:略
解析:

设动点M的坐标为(xy),则Q的坐标为(2x12y)

因为点Q为椭圆上的点,所以有,即

所以点M的轨迹方程是


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知焦距为4的椭圆C:
x2
a2
+
y2
b2
=1  (a>b>0)
的左、右顶点分别为A、B,椭圆C的右焦点为F,过F作一条垂直于x轴的直线与椭圆相交于R、S,若线段RS的长为
10
3

(1)求椭圆C的方程;
(2)设Q(t,m)是直线x=9上的点,直线QA、QB与椭圆C分别交于点M、N,求证:直线MN
必过x轴上的一定点,并求出此定点的坐标;
(3)实际上,第(2)小题的结论可以推广到任意的椭圆、双曲线以及抛物线,请你对抛物线y2=2px(p>0)写出一个更一般的结论,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,点P到两点(-
3
,0),(
3
,0
)的距离之和等于4,设点P的轨迹为C.
(1)写出C的轨迹方程;
(2)已知x轴上的一定点A(1,0),Q为轨迹C上的动点,求AQ中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,点P到两点(-
3
,0),(
3
,0
)的距离之和等于4,设点P的轨迹为C.
(1)写出C的轨迹方程;
(2)已知x轴上的一定点A(1,0),Q为轨迹C上的动点,求AQ中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河北省衡水中学高二(上)第三次调研数学试卷(文科)(解析版) 题型:解答题

在平面直角坐标系中,点P到两点(-,0),()的距离之和等于4,设点P的轨迹为C.
(1)写出C的轨迹方程;
(2)已知x轴上的一定点A(1,0),Q为轨迹C上的动点,求AQ中点M的轨迹方程.

查看答案和解析>>

同步练习册答案