精英家教网 > 高中数学 > 题目详情
19.运行如图的程序框图,所绘制的曲线中焦点在y轴的曲线有3条

分析 模拟执行程序框图,可得绘制的曲线的方程,结合椭圆,双曲线的性质即可得解.

解答 解:模拟执行程序框图,可得绘制的曲线有:
$\frac{{x}^{2}}{2.5}+\frac{{y}^{2}}{1}=1$,椭圆的焦点在x轴上;
$\frac{{x}^{2}}{1.5}+\frac{{y}^{2}}{2}=1$,椭圆的焦点在y轴上;
$\frac{{x}^{2}}{0.5}+\frac{{y}^{2}}{3}=1$,椭圆的焦点在y轴上;
$\frac{{x}^{2}}{-0.5}+\frac{{y}^{2}}{4}$=1,双曲线的焦点在y轴上,
故答案为:3.

点评 本题主要考查了循环结构的程序框图,考查了双曲线的简单性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.某单位N名员工参加“社区低碳你我他”活动,他们的年龄在25岁至50岁之间,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50),得到的频率分布直方图如图所示,下表是年龄的频率分布表.
区间[25,30)[30,35)[35.40)[40,45)[45,50)
人数25ab
(1)求正整数a,b,N的值;
(2)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?
(3)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为$\frac{2}{3}$,中奖可以获得2分;方案乙的中奖率为$\frac{2}{5}$,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.
(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X,求X≤3的概率;
(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,分别求两种方案下小明、小红累计得分的分布列,并指出他们选择何种方案抽奖,累计得分的数学期望较大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某程序框图如图所示,该程序运行后输出的值是(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知正方体ABCD-A′B′C′D′,点E是上底面A′B′C′D′的中心,取向量$\overrightarrow{AB}$、$\overrightarrow{AD}$、$\overrightarrow{AA′}$为基底的基向量,在下列条件下,分别求x、y、z的值
(1)$\overrightarrow{BD′}$=x$\overrightarrow{AD}$+y$\overrightarrow{AB}$+z$\overrightarrow{AA′}$;
(2)$\overrightarrow{AE}$=x$\overrightarrow{AD}$+y$\overrightarrow{AB}$+z$\overrightarrow{AA′}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图所示,函数 f(x)=Asin(ωx+φ)+B的图象,则S=f(1)+f(2)+f(3)+…+f(2015)=2015.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知f(x)是定义在R上的函数,且f(2-x)=-f(2+x),f(x+2)=-f(x).给出下列命题:
①f(0)=0;            
②函数f(x)是周期函数,并且周期为4;
③函数f(x)是奇函数;   
④函数f(x)的图象关于y轴对称;
⑤函数f(x)的图象关于点(2,0)成中心对称.
其中所有正确命题的序号为①②③⑤(填写所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知α、β是两个平面,m,n是α、β外的两条直线,给出四个论断:①m⊥n;②α⊥β;③n⊥β;④m⊥α.以其中三个为条件,余下的一个为结论,能组成正确命题的个数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知圆C:ρ=2cosθ-2sinθ,直线l的参数方程为$\left\{\begin{array}{l}{x=t}\\{y=-1+2\sqrt{2}t}\end{array}\right.$(t为参数),直线l与圆C分别交于M、N,点P是圆C上不同于M、N的任意一点.
(1)写出C的直角坐标方程和l的普通方程;
(2)求△PMN面积的最大值.

查看答案和解析>>

同步练习册答案