精英家教网 > 高中数学 > 题目详情
3.已知数列{an},{bn}满足a1=2,b1=1,且$\left\{\begin{array}{l}{{a}_{n}=\frac{3}{4}{a}_{n-1}+\frac{1}{4}{b}_{n-1}+1}\\{{b}_{n}=\frac{1}{4}{a}_{n-1}+\frac{3}{4}{b}_{n-1}+1}\end{array}\right.$(n≥2),若cn=an+bn
(1)证明:数列{cn}是等差数列;
(2)求数列{cn}的通项公式.

分析 (1)根据题设得an+bn=(an-1+bn-1)+2(n≥2),即cn=cn-1+2(n≥2),即可得到数列{cn}是等差数列;
(2)由(1)可得数列{cn}的通项公式cn

解答 (1)由$\left\{\begin{array}{l}{{a}_{n}=\frac{3}{4}{a}_{n-1}+\frac{1}{4}{b}_{n-1}+1}\\{{b}_{n}=\frac{1}{4}{a}_{n-1}+\frac{3}{4}{b}_{n-1}+1}\end{array}\right.$(n≥2),得an+bn=(an-1+bn-1)+2(n≥2),即cn=cn-1+2(n≥2),
∴{cn}是首项为a1+b1=3,公差为2的等差数列;
(2)由数列{cn}是以c1=3为首项,2为公差的等差数列,得
cn=3+2(n-1)=2n+1.

点评 本题主要考查等差数列的性质以及数列的求和,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.直线y=x-$\frac{1}{2}$与抛物线x2=2y的位置关系是相切(填“相交、相切、相离)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数y=f(x)是定义在R+上的减函数,并且任意的正实数x,y满足f(xy)=f(x)+f(y),f(2$\sqrt{2}$)=1.
(1)求f(1)的值;
(2)求f(8)的值;
(3)如果f(4)+f(x-2)<2,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C经过点A(1,$\frac{\sqrt{3}}{2}$),B(0,-1),P是该椭圆上的-个动点,F1,F2是椭圆的左右焦点.
(I)求椭圆C的方程.
(Ⅱ)求PF1•PF2的最大值.
(Ⅲ)求$\overrightarrow{P{F_1}}$•$\overrightarrow{P{F_2}}$的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若对任意实数x>0,x+$\frac{1}{x+a}$>a恒成立,则实数a的范围是[0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{1}{3}$x3+lnx-$\frac{3}{2}$x.
(1)判断f(x)是否为定义域上的单调函数,并说明理由;
(2)设x∈(0,e],f(x)-mx≤0恒成立,求m的最小整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若a1=1,an=-SnSn-1,(n≥2),求an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如果x0满足f(x)=x,则称x0为函数y=f(x)的一个不动点,设集合A={x|f(x)=x},集合B={x|f[f(x)]=x},为探究集合A和B的关系,王超和张宏做了如下探究:
王超:如果我设f(x)=2x+3,求出集合A和B,我由此发现了的它们的一种关系;
张宏:如果我设f(x)=x2-2,求出集合A和B,我也由此发现了集合A和B的一种关系.
(1)请写出王超研究集合A和B的关系的过程;
(2)请写出张宏研究集合A和B的关系的过程;
(3)请你总结归纳王超和张宏的研究结果(不要求证明),运用你发现的结论,解决下面问题:如果当f(x)=x2+bx+c(b、c∈R)时,A={-2,1},求集合B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=-lnx+$\frac{1}{2}$ax2+(1-a)x+2.
(Ⅰ)当0<x<1时,试比较f(1+x)与f(1-x)的大小;
(Ⅱ)若斜率为k的直线与y=f(x)的图象交于不同两点A(x1,y1),B(x2,y2),线段AB的中点的横坐标为x0
证明:f′(x0)>k.

查看答案和解析>>

同步练习册答案