B
分析:利用条件可得出函数的奇偶性,进而再利用其单调性即可得出m、n的取值范围,再画出图象,根据

表示的几何意义即可求出其取值范围.
解答:∵函数y=f(x-1)的图象关于点(1,0)对称,∴函数y=f(x)关于原点对称,即为奇函数;

∴由f(m
2-6m+21)+f(n
2-8n)<0得f(m
2-6m+21)<-f(n
2-8n)=f(-n
2+8n)
又∵函数y=f(x)是定义在R上的增函数,
∴m
2-6m+21<-n
2+8n,
∴(m-3)
2+(n-4)
2<4.
∵实数m,n满足不等式组

,即满足

.
作出图象,即图中的阴影部分所表示的点.
∵

表示的是阴影部分的点到原点的距离,
∴

,
求出M(3,2).
∴

∴13<m
2+n
2<49.
故选B.
点评:由函数的奇偶性和单调性正确得出m、n的取值范围及根据条件作出图形是解题的关键.