精英家教网 > 高中数学 > 题目详情

如图①,在等腰梯形ABCD中,AD∥BC,AB=AD,∠ABC=60°,E是BC的中点.如图②,将△ABE沿AE折起,使二面角BAEC成直二面角,连结BC、BD,F是CD的中点,P是棱BC的中点.求证:

图①图②
(1)AE⊥BD;
(2)平面PEF⊥平面AECD.

(1)见解析(2)见解析

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,E是以AB为直径的半圆弧上异于A,B的点,矩形ABCD所在平面垂直于该半圆所在的平面,且AB=2AD=2。

(1).求证:EA⊥EC;
(2).设平面ECD与半圆弧的另一个交点为F。
①求证:EF//AB;
②若EF=1,求三棱锥E—ADF的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,平面,底面为矩形,的中点.

(1)求证:
(2)在线段上是否存在一点,使得平面?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱锥A-BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F分别是AC,AD上的动点,且=λ(0<λ<1).

(1)求证:不论λ为何值,总有平面BEF⊥平面ABC;
(2)当λ为何值时,平面BEF⊥平面ACD..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥PABCD中,PD⊥底面ABCD,AD⊥AB,CD∥AB,AB=AD=2,CD=3,直线PA与底面ABCD所成角为60°,点M、N分别是PA、PB的中点.求证:

(1)MN∥平面PCD;
(2)四边形MNCD是直角梯形;
(3)DN⊥平面PCB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱ABC-A1B1C1中,D是BC的中点.

(1)若E为A1C1的中点,求证:DE∥平面ABB1A1
(2)若E为A1C1上一点,且A1B∥平面B1DE,求的值..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥P-ABC中,△PAC,△ABC分别是以A、B为直角顶点的等腰直角三角形,AB=1.现给出三个条件:①PB=;②PB⊥BC;③平面PAB⊥平面ABC.试从中任意选取一个作为已知条件,并证明:PA⊥平面ABC;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在空间四边形中,分别是上的点,分别是上的点,且,求证:三条直线相交于同一点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.
 
(1)求证:平面PAC⊥平面PBC
(2)若AB=2,AC=1,PA=1,求二面角C­PB­A的余弦值..

查看答案和解析>>

同步练习册答案