精英家教网 > 高中数学 > 题目详情
3.若函数y=(a2-3a+3)•logax是对数函数,又函数$f(x)={log_2}({b^x}-{a^x})$中f(1)=1,
(1)求a,b的值;
(2)当x∈[1,3]时,求f(x)的最小值.

分析 (1)根据对数函数的定义得到关于a的方程,求出a的值,根据f(1)=1求出b的值即可;
(2)根据(1)求出f(x)的解析式,从而求出f(x)的最小值即可.

解答 解:(1)依题意得$\left\{\begin{array}{l}{a^2}-3a+3=1\\ a>0且a≠1\end{array}\right.$;
∴a=2,
又f(1)=1,
∴log2(b-2)=1,
∴b=4;
(2)$f(x)={log_2}({4^x}-{2^x})x∈[1,3]$
=${log_2}[{({2^x}-\frac{1}{2})^2}-\frac{1}{4}]$,
令$u(x)={({2^x}-\frac{1}{2})^2}-\frac{1}{4}$由于x∈[1,3],
∴2≤2x≤8,
∴u(x)在[1,3]上是增加的,
∴当x=1时$u{(x)_{min}}={(2-\frac{1}{2})^2}-\frac{1}{4}=2$,
∴f(x)min=log22=1.

点评 本题考查了对数函数的性质,考查函数的单调性、最值问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2-2x+2.
(1)求f(x)单调区间
(2)求f(x)在区间[$\frac{1}{2}$,3]上的最大值和最小值;
(3)若g(x)=f(x)-mx在[2,4]上是单调函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.点M(3,-1)是圆x2+y2-4x+y-2=0内一点,过点M最长的弦所在的直线方程为x+2y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知f(x)=Asin(ωx+φ)(A>0ω>0,$|φ|<\frac{π}{2}$,x∈R)在一个周期的图象如图所示,当$f(x)=\frac{1}{2}$时,$cos(2x-\frac{π}{6})$=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知两个等差数列2,6,10,…,210及2,8,14,…,212,由这两个数列的公共项按从小到大的顺序组成一个新的数列,求这个新数列的各项之和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.从甲同学家到乙同学家的中途有一个公园,甲、乙两家离公园入口都是2公里,甲从10点钟出发前往乙同学家,如图所示是甲同学从自己家出发到乙家经过的路程y(公里)和时间x(分钟)的关系.根据图象,回答下列问题:
(1)甲在公园休息了吗?若休息了,休息了多长时间?
(2)写出y=f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$\frac{{sin2θ+2{{sin}^2}θ}}{1+tanθ}=k(\frac{π}{4}<θ<\frac{π}{2})$,则$sin(θ+\frac{π}{4})$的值(  )
A.随着k的增大而增大
B.随着k的增大而减小
C.是一个与k无关的常数
D.有时随k增大而增大,有时随k增大而减小

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}满足a1=-1,an+1=an+$\frac{1}{nn+1}$,n∈N*,则通项公式an=-$\frac{1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在锐角△ABC中,设角A,B,C所对边分别为a,b,c,bsinCcosA-4csinAcosB=0.
(1)求证:tanB=4tanA;
(2)若tan(A+B)=-3,c=3,b=5,求a的值.

查看答案和解析>>

同步练习册答案