精英家教网 > 高中数学 > 题目详情
过点(1,
2
)
的直线l将圆(x-2)2+y2=4分成两段弧,当劣弧所对的圆心角最小时,直线l的斜率k=
 
分析:本题考查的是直线垂直时斜率之间的关系,及直线与圆的相关性质,要处理本题我们先要画出满足条件的图形,数形结合容易得到符合题目中的条件的数理关系,由劣弧所对的圆心角最小弦长最短,及过圆内一点最短的弦与过该点的直径垂直,易得到解题思路.
解答:精英家教网解:如图示,由图形可知:
点A(1,
2
)
在圆(x-2)2+y2=4的内部,
圆心为O(2,0)要使得劣弧所对的圆心角最小,
只能是直线l⊥OA,
所以kl=-
1
kOA
=-
1
-
2
=
2
2
点评:垂径定理及其推论是解决直线与圆关系时常用的定理,要求大家熟练掌握,垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧.相关推论,过圆内一点垂直于该点直径的弦最短,且弦所地的劣弧最短,优弧最长,弦所对的圆心角、圆周角最小….
练习册系列答案
相关习题

科目:高中数学 来源:中学教材标准学案 数学 高二上册 题型:013

过点(1,2)的直线l,且与点A(2,3)、B(4,-5)的距离相等,则l的方程是

[  ]

A.4+y-6=0

B.x+4y-6=0

C.3x+2y-7=0或4x+y-6=0

D.3x+2y+7=0或x+4y-6=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知长方形ABCD, AB=2, BC=1. 以AB的中点为原点建立如图8所示的平面直角坐标系.

(Ⅰ)求以A、B为焦点,且过C、D两点的椭圆的标准方程;

(Ⅱ)过点P(0,2)的直线交(Ⅰ)中椭圆于M,N两点,是否存在直线,使得以弦MN为直径的圆恰好过原点?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:甘肃一模 题型:填空题

过点(1,
2
)
的直线l将圆(x-2)2+y2=4分成两段弧,当劣弧所对的圆心角最小时,直线l的斜率k=______.

查看答案和解析>>

科目:高中数学 来源:江苏模拟题 题型:填空题

过点(1,2)的直线l与x轴的正半轴、y轴的正半轴分别交于A,B两点,O为坐标原点,当△AOB的面积最小时,直线l的方程是(    )。

查看答案和解析>>

同步练习册答案