精英家教网 > 高中数学 > 题目详情

已知a,b,c都是正数,求证:数学公式≥abc.

证明:∵a,b,c都是正数,
∴a2b2+b2c2≥2ab2c,a2b2+c2a2≥2a2bc,c2a2+b2c2≥2abc2
∴2(a2b2+b2c2+c2a2)≥2ab2c+2a2bc+2abc2
∴a2b2+b2c2+c2a2≥ab2c+a2bc+abc2
≥abc.
分析:利用基本不等式,再相加,即可证得结论.
点评:本题考查利用基本不等式证明不等式,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•许昌三模)已知a、b、c都是正整数且abc=8,求证:log2(2+a)+log2(2+b)+log2(2+c)≥6.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c都是正实数,求证(1)
a2
b
≥2a-b,(2)
a2
b
+
b2
c
+
c2
a
≥a+b+c.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c都是正实数,且满足log4(16a+b)=log2
ab
,则使4a+b≥c恒成立的c的取值范围是
(0,36]
(0,36]

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
(Ⅰ)已知x,y都是正实数,求证:x3+y3≥x2y+xy2
(Ⅱ)已知a,b,c都是正实数,求证:a3+b3+c3
13
(a2+b2+c2)(a+b+c)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河南省郑州市新密二高高三(上)周练数学试卷3(理科)(解析版) 题型:解答题

已知a、b、c都是正整数且abc=8,求证:log2(2+a)+log2(2+b)+log2(2+c)≥6.

查看答案和解析>>

同步练习册答案