分析:(Ⅰ)作差因式分解得(x-y)2(x+y),根据题意可得(x-y)2(x+y)≥0,从而问题得证;
(Ⅱ)由(Ⅰ)知:a3+b3≥a2b+ab2;b3+c3≥b2c+bc2;c3+a3≥c2a+ca2;上述三式相加即可证得.
解答:证明:(Ⅰ)∵(x
3+y
3)-(x
2y+xy
2)=x
2(x-y)+y
2(y-x)=(x-y)(x
2-y
2)=(x-y)
2(x+y),
又∵x,y∈R
+,∴(x-y)
2≥0,,x+y>0,∴(x-y)
2(x+y)≥0,
∴x
3+y
3≥x
2y+xy
2.…(5分)
(Ⅱ)∵a,b,c∈R
+,由(Ⅰ)知:a
3+b
3≥a
2b+ab
2;b
3+c
3≥b
2c+bc
2;c
3+a
3≥c
2a+ca
2;
将上述三式相加得:2(a
3+b
3+c
3)≥(a
2b+ab
2)+(b
2c+bc
2)+(c
2a+ca
2),
| 3(a3+b3+c3)≥(a3+a2b+ca2)+(b3+ab2+b2c)+(c3+bc2+c2a) | =a2(a+b+c)+b2(a+b+c)+c2(a+b+c) | =(a+b+c)+(a2+b2+c2) |
| |
∴
a3+b3+c3≥(a2+b2+c2)(a+b+c).…(10分)
点评:本题考查不等式的证明,利用了综合法.综合法由因导果,作差时应注意因式分解,同时与0 比较.