精英家教网 > 高中数学 > 题目详情
已知△ABC的三个内角A,B,C的对边分别为a,b,c,且△ABC的面积为S=
3
2
accosB.
(1)若c=2a,求角A,B,C的大小;
(2)若a=2,且
π
4
≤A≤
π
3
,求边c的取值范围.
考点:正弦定理,余弦定理
专题:解三角形
分析:(1)法一:根据正弦定理,建立条件关系,即可求出角A,B,C的大小;法二:根据余弦定理,建立条件关系,即可求出角A,B,C的大小.
(2)根据正弦定理表示出c,根据三角函数的图象和性质即可得到结论.
解答: 解:由已知及三角形面积公式得S=
1
2
acsinB=
3
2
accosB,
 化简得sinB=
3
cosB,
即tanB=
3
,又0<B<π,∴B=
π
3

(1)解法1:由c=2a,及正弦定理得,sinC=2sinA,
又∵A+B=
3

∴sin(
3
-A)=2sinA,
化简可得tanA=
3
3
,而0<A<
3

∴A=
π
6
,C=
π
2

解法2:由余弦定理得,b2=a2+c2-2accosB=a2+4a2-2a2=3a2
∴b=
3
a

∴a:b:c=1:
3
:2
,知A=
π
6
,C=
π
2

(2)由正弦定理得
a
sinA
=
b
sinB
=
c
sinC

即c=
asinC
sinA
=
2sinC
sinA

由C=
3
-A,得c=
2sin(
3
-A)
sinA
=
2×(
3
2
cosA+
1
2
sinA)
sinA
=
3
cosA+sinA
sinA
=
3
tanA
+1
又由
π
4
≤A≤
π
3

知1≤tanA≤
3

故c∈[2,
3
+1
].
点评:本题主要考查正弦定理和余弦定理的应用,要求熟练掌握相应的定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-ax+
1-a
x
-1(a∈R).
(Ⅰ)当a=1时,求f(x)在点(1,-2)处的切线方程;
(Ⅱ)当a≥
1
2
时,讨论f(x)的单调性;
(Ⅲ)设g(x)=f(x)-
1-a
x
+1,在函数g(x)的图象上取两定点A(x1,g(x1)),B(x2,g(x2))(x1<x2),设直线AB的斜率为k,证明:存在x0∈(x1,x2),使g′(x0)=k成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

设各项均为正数的无穷数列{an},{bn}满足:对任意n∈N*都有2bn=an+an+1且an+12=bn•bn+1
(1)求证:数列{
bn
}是等差数列;
(2)设a1=1,a2=3,b1=2,求{an}和{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

若下列各组中两个方程表示的直线垂直,a应取什么值?
(1)
4ax+y=1
(1-a)x+y=-1

(2)
2x+ay=2
ax+2y=1

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),F是它的左焦点,Q是右准线与x轴的交点,点P(0,3)满足
PF
PQ
=0,N是直线PQ与椭圆的一个公共点,当|PN|:|NQ|=1:8时,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2+alnx
(a<0).
(Ⅰ)若a=-1,求函数f(x)的极值;
(Ⅱ)若?x>0,不等式f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

a>b>0,求a2+
1
b(a-b)
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中共有10个大小相同的编号为1、2、3的球,其中1号球有1个,2号球有3个,3号球有6个.
(Ⅰ)从袋中任意摸出2个球,求恰好是一个2号球和一个3号球的概率;
(Ⅱ)从袋中任意摸出2个球,记得到小球的编号数之和为ξ,求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
C
2
n
n2+n
=
 

查看答案和解析>>

同步练习册答案