精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的焦距为4,且与椭圆x2+
y2
2
=1
有相同的离心率,斜率为k的直线l经过点M(0,1),与椭圆C交于不同两点A、B.
(1)求椭圆C的标准方程;
(2)当椭圆C的右焦点F在以AB为直径的圆内时,求k的取值范围.
分析:(1)根据椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的焦距为4,可得c=2,利用与椭圆x2+
y2
2
=1
有相同的离心率,可求得a=2
2
,进而可得b=2,故可求椭圆的标准方程.
(2)设直线l方程:y=kx+1,A(x1,y1),B(x2,y2),将直线方程与椭圆方程联立
y=kx+1
x2
8
+
y2
4
=1
可得(1+2k2)x2+4kx-6=0,利用韦达定理有x1+x2=
-4k
1+2k2
,x1x2=
-6
1+2k2
,要使右焦点F在圆内部,则有
AF
BF
<0,用坐标表示可得不等式,从而可求出k的范围.
解答:解:(1)∵焦距为4,∴c=2…(1分)
又∵x2+
y2
2
=1
的离心率为
2
2
…(2分)
e=
c
a
=
2
a
=
2
2
,∴a=2
2
,b=2…(4分)
∴标准方程为
x2
8
+
y2
4
=1
…(6分)
(2)设直线l方程:y=kx+1,A(x1,y1),B(x2,y2),由
y=kx+1
x2
8
+
y2
4
=1
得(1+2k2)x2+4kx-6=0…(7分)
∴x1+x2=
-4k
1+2k2
,x1x2=
-6
1+2k2

由(1)知右焦点F坐标为(2,0),∵右焦点F在圆内部,∴
AF
BF
<0…(8分)
∴(x1-2)(x2-2)+y1y2<0即x1x2-2(x1+x2)+4+k2 x1x2+k(x1+x2)+1<0…(9分)
(1+k2)•
-6
1+2k2
+(k-2)•
-4k
1+2k2
+5=
8k-1
1+2k2
<0…(11分)
∴k<
1
8
…(12分)
经检验得k<
1
8
时,直线l与椭圆相交,∴直线l的斜率k的范围为(-∞,
1
8
)…(13分)
点评:本题以椭圆为载体,考查椭圆的标准方程与几何性质,考查直线与椭圆的位置关系,考查向量与解析几何的连续,由较强的综合性,解题的关键是将右焦点F在圆内部,转化为
AF
BF
<0
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且经过点P(1,
3
2
)

(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2
3
,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足
DA
DB
,若λ∈[
3
8
1
2
],求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
3
2
),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,离心率为
2
2
,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记λ=
AP+BQ
PQ
,若直线l的斜率k≥
3
,则λ的取值范围为
 

查看答案和解析>>

同步练习册答案