精英家教网 > 高中数学 > 题目详情

已知数列{an},{bn}满足a1=2,2an=1+anan+1,bn=an-1,bn≠0
(1)求证数列{数学公式}是等差数列,并求数列{an}的通项公式;
(2)令cn=数学公式,Tn为数列{cn}的前n项和,求证:Tn<2.

(1)证明:∵bn=an-1,bn≠0
∴an=bn+1
又2an=1+anan+1
∴2(1+bn)=1+(bn+1)(bn+1+1)
化简得:bn-bn+1=bnbn+1…(2分)
∵bn≠0



是以1为首项,1为公差的等差数列.…(4分)


…(6分)
(Ⅱ)由(Ⅰ)知,Cn=
∴Tn=①,
Tn=②…(9分)
①-②得:Tn===…(11分)
∴Tn=2-<2(12分)
分析:(1)由题意可得an=bn+1,结合2an=1+anan+1,代入化简得:bn-bn+1=bnbn+1,从而可得,可证是以1为首项,1为公差的等差数列,由等差数列的通项可求,进而可求
(Ⅱ)由(Ⅰ)知,Cn=,利用错位相减可求数列的和
点评:本题主要考查了利用数列的递推公式构造等差数列,求解数列的通项公式,错位相减求解数列的和是数列求和方法中的重点与难点,要注意掌握
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1<0,
an+1
an
=
1
2
,则数列{an}是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,nan+1=2(n十1)an+n(n+1),(n∈N*),
(I)若bn=
ann
+1
,试证明数列{bn}为等比数列;
(II)求数列{an}的通项公式an与前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)已知数列{an}中,an=-4n+5,等比数列{bn}的公比q满足q=an-an-1(n≥2),且b1=a2,则|b1|+|b2|+…+|bn|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+3n+1,则数列{an}的通项公式为
an=
5
      n=1
2n+2
    n≥2
an=
5
      n=1
2n+2
    n≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n,那么它的通项公式为an=
2n
2n

查看答案和解析>>

同步练习册答案