精英家教网 > 高中数学 > 题目详情
(1)已知命题p:?x∈R,x2+2ax+a≤0.若命题p是假命题,求实数a的取值范围;
(2)已知p:方程x2+mx+1=0有两个不等的实数根,q:方程4x2+4(m-2)x+1=0无实根.若p或q为真,p且q为假,求实数m的范围.
分析:(1)由题设知x∈R,x2+2ax+a>0为真4a2-4a<0,由此能求出实数a的取值范围;
(2)由题设知p真q假,即
m2-4>0
16(m-2)2-16≥0
,或p假q真,即
m2-4≤0
16(m-2)2-16<0
,由此能求出m的范围.
解答:解:(1)由已知?p:?x∈R,x2+2ax+a>0为真4a2-4a<0即0<a<1;
(2)p或q为真,p且q为假,由这句话可知p、q命题为一真一假.
(i)当p真q假时,
m2-4>0
16(m-2)2-16≥0
,得m<-2或m≥3,
(ii)当p假q真时,
m2-4≤0
16(m-2)2-16<0
,得1<m≤2,
综上所述m的范围是m|m<-2或1<m≤2或m≥3.
点评:本题考查命题的真假判断和应用,解题时要认真审题,注意解不等式公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有下列命题:
①函数y=cos(x-
π
4
)cos(x+
π
4
)的图象中,相邻两个对称中心的距离为π;
②函数y=
x+3
x-1
的图象关于点(-1,1)对称;
③关于x的方程ax2-2ax-1=0有且仅有一个实数根,则实数a=-1;
④已知命题p:对任意的x∈R,都有sinx≤1,则非p:存在x∈R,使得sinx>1.
其中所有真命题的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知命题p:2x2-3x+1≤0和命题q:x2-(2a+1)x+a(a+1)≤0,若¬p是¬q的必要不充分条件,求实数a的取值范围.
(2)已知命题s:方程x2+(m-3)x+m=0的一根在(0,1)内,另一根在(2,3)内.命题t:函数f(x)=ln(mx2-2x+1)的定义域为全体实数.若s∨t为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知命题p:π是无理数;命题q:3>5,判断“p∨q”,“p∧q”的真假.
(2)画出一元二次不等式x+y-1>0表示的平面区域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知命题p:方程x2+(m-3)x+1=0无实根,命题q:方程x2+
y2m-1
=1是焦点在y轴上的椭圆.若¬p与p∧q同时为假命题,求m的取值范围.
(2)已知命题p:2x2-3x+1≤0和命题q:x2-(2a+1)x+a(a+1)≤0,若¬p是¬q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案