精英家教网 > 高中数学 > 题目详情
圆心在原点且与直线相切的圆方程为   
【答案】分析:由直线与圆相切可得,圆心(0,0)到直线x+y-=0的距离d=r,从而可求r,进而可求圆的方程
解答:解:设所求的圆的方程为:x2+y2=r2
∵直线 x+y-=0与圆相切
圆心(0,0)到直线x+y-=0的距离d==1=r
所求的圆的方程为:x2+y2=1
故答案为:x2+y2=1
点评:本题主要考查了直线与圆的相切关系的应用,圆的标准方程的求解,解题的关键是熟练应用直线与圆的相切的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给定椭圆C:
x2
a2
+
y2
b2
=1(>b>0),将圆心在原点O、半径是
a2+b2
的圆称为椭圆C的“准圆”.已知椭圆C的方程为
x2
3
+y2=1.
(Ⅰ)过椭圆C的“准圆”与y轴正半轴的交点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,求l1,l2的方程;
(Ⅱ)若点A是椭圆C的“准圆”与X轴正半轴的交点,B,D是椭圆C上的两相异点,且BD⊥x轴,求
AB
AD
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黄埔区一模)给定椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,称圆心在原点O、半径是
a2+b2
的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(
2
,0)
,其短轴的一个端点到点F的距离为
3

(1)求椭圆C和其“准圆”的方程;
(2)若点A是椭圆C的“准圆”与x轴正半轴的交点,B,D是椭圆C上的两相异点,且BD⊥x轴,求
AB
AD
的取值范围;
(3)在椭圆C的“准圆”上任取一点P,过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,试判断l1,l2是否垂直?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

实数m≠n且m2sinθ-mcosθ+
π
3
=0,n2sinθ-ncosθ+
π
3
=0
,则连接(m,m2),(n,n2)两点的直线与圆心在原点上的单位圆的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黄埔区一模)给定椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,称圆心在原点O、半径是
a2+b2
的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(
2
,0)
,其短轴的一个端点到点F的距离为
3

(1)求椭圆C和其“准圆”的方程;
(2)过椭圆C的“准圆”与y轴正半轴的交点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,求l1,l2的方程;
(3)若点A是椭圆C的“准圆”与x轴正半轴的交点,B,D是椭圆C上的两相异点,且BD⊥x轴,求
AB
AD
的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省高三3月月考数学试卷(解析版) 题型:解答题

(本小题满分15分)

给定椭圆C:,称圆心在原点O、半径是的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为,其短轴的一个端点到点的距离为

(1)求椭圆C和其“准圆”的方程;

(2)若点是椭圆C的“准圆”与轴正半轴的交点,是椭圆C上的两相异点,且轴,求的取值范围;

(3)在椭圆C的“准圆”上任取一点,过点作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.

 

查看答案和解析>>

同步练习册答案